首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GPS共视比对(GPS CV)是国际原子时进行时间连接的主要手段之一,即使在有TWSTFT(卫星双向时间频率传递)的实验室GPS也作为时间比对的备用手段而存在,而且TWSTFT系统启用时需用GPS做校准。国际权度局(BIPM)为了减小比对误差,对一些时间实验室的GPS接收机进行不定期校准。国家授时中心(NTSC)利用BIPM给出的校准报告对NTSC时间基准实验室的GPS定时型接收机的内部时延及相关数据进行修正,使UTC(NTSC)的准确度得到提高。  相似文献   

2.
John R. Varsik 《Solar physics》1995,161(2):207-228
The Big Bear videomagnetograph is calibrated using three methods. Longitudinal magnetograms are calibrated by using the differences in radial velocity of the Sun caused by solar rotation, or by measuring the line profile in the Zeeman-sensitive 6103 line used by the magnetograph system. Transverse magnetograms can be calibrated by obtaining spectra in the more magnetically sensitive 5250 line which measure the total magnetic field and then subtracting the longitudinal component. The calibration of the transverse magnetograms is in agreement with that obtained by line profile measurements. Observations of an active region on 1993 March 8 with both the magnetograph system and with the BBSO spectrograph showed that good agreement was found between all three methods, provided the effect of seeing on the magnetograms is allowed for. Magnetograph saturation does not occur for magnetic fields below about 2100 G.  相似文献   

3.
边带分离(Sideband-separating, 2SB)接收可实现上边带(Upper Sideband, USB)和下边带(Lower Sideband, LSB)信号同时观测,观测效率高且上、下两边带不会出现混叠.因此在射电天文观测应用中越来越受到重视.由于全模拟边带分离接收机存在难以克服的幅度和相位误差,导致了边带抑制率较低,影响了系统的性能.数字边带分离接收机可通过数字信号处理方法,有效改善系统边带抑制率.在3–18 GHz频段构建数字边带分离接收机原理实验,并基于边带分离理论和数字校准方法,实现实验系统的边带不平衡度校准,大大改善了系统的边带抑制率.  相似文献   

4.
An investigation of the stability of the transfer function of the European Southern Observatory's Very Large Telescope Interferometer has been carried out through observations of Fomalhaut, which was observed over a range in hour angle from 21:50–05:24 on 20 October 2002. No significant variation in the transfer function was found for the zenith angle range 5°–70°. The projected baseline varied between 139.7 m and 49.8 m during the observations and, as an integral part of the determination of the transfer function, a new accurate limb‐darkened angular diameter for Fomalhaut of 2.109 ± 0.013 mas has been established. This has led to improved values for the emergent flux = (3.43 ± 0.10)×108 Wm−2, effective temperature = 8819 ± 67 K and radius = (1.213 ± 0.011)×109 m (R/R = 1.744 ± 0.016). The luminosity has been found to be (6.34 ± 0.20)×1027 W (L/L = 16.5 ± 0.5). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We report on a ground X-ray calibration of two X-ray telescope prototypes at the PANTER X-ray Test Facility, operated by the Max-Planck-Institute for Extraterrestrial Physics, in Neuried, Germany.The X-ray telescope prototypes were developed by the Institute of Precision Optical Engineering(IPOE)of Tongji University, in a conical Wolter-I configuration, using thermal glass slumping technology.Prototype #1 with three layers and Prototype #2 with 21 layers were tested to assess the prototypes' onaxis imaging performance. The measurement of Prototype #1 indicates a Half Power Diameter(HPD) of 82′′ at 1.49 keV. As for Prototype #2, we performed more comprehensive measurements of on-axis angular resolution and effective area at several energies ranging from 0.5–10 keV. The HPD and effective area are111′′ and 39 cm~2 at 1.49 keV, respectively, at which energy the on-axis performance of the prototypes is our greatest concern.  相似文献   

6.
7.
1 INTRODUCTION The distance to the Galactic center R0 is a fundamental constant for astronomy and astrophysics. Most determinations of astronomical quantities are directly connected with the Galactic distance scale, e.g., the rotational speed of our Galax…  相似文献   

8.
The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with the capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK. To make full use of this capability, Narukage et al. (Solar Phys. 269, 169, 2011) determined the thickness of each of the X-ray focal-plane analysis filters based on calibration measurements from the ground-based end-to-end test. However, in their paper, the calibration of the thicker filters for observations of active regions and flares, namely the med-Be, med-Al, thick-Al and thick-Be filters, was insufficient due to the insufficient X-ray flux used in the measurements. In this work, we recalibrate those thicker filters using quiescent active region data taken with multiple filters of XRT. On the basis of our updated calibration results, we present the revised coronal-temperature-diagnostic capability of XRT.  相似文献   

9.
用M15进行CCD视场的校准   总被引:3,自引:2,他引:1  
用1996年10月所获得的球状星团M15和大距离双星61Cygni的CCD观测资料,分别求解了上海天文台1.56m天体测量望远镜上安装的CCD探测器视场的位置角改正δp和尺度因子ρ。通过对土星主要卫星观测资料0-C的计算分析表明,经球状星团校准视场后所得结果较双星校准后结果的精度要高。该结论为进一步提高计算大行星卫星的位置测量精度打下良好的基础。  相似文献   

10.
CoRoT (Convection, Rotation and Transit) is a mission of high-accuracy photometry with two scientific programmes: asteroseismology and planet finding, using CCDs as detectors. Ten 2048×4096 CCDs manufactured by E2V (42-80) were calibrated on Meudon test bench in order to choose the best ones for flight. A very high instrument stability is needed. Taking into account the environmental perturbations (temperature, attitude control system jitter, radiations, etc.) we studied sensitivity of CCD gain and quantum efficiency to temperature and sensitivity of the output signal to bias voltages. Special attention was paid to pixel capacity and noise sources coming from dark current and pixel response non-uniformity. The calibration results together with the expected voltages and temperature fluctuations are compared with the specifications.  相似文献   

11.
明安图射电频谱日像仪(Mingantu Spectral Radioheliograph, MUSER)能够在0.4--15GHz超宽频带内实现高时间、高空间、高频率分辨率的太阳射电成像. 而射电亮温度是描述太阳物理过程的一个重要的参数, 在研究不同射电辐射机制、太阳磁场以及太阳爆发过程中非热粒子加速等问题上有着非常重要的作用, 因此必须对MUSER观测的图像进行亮温度定标. 将介绍一种适用于射电日像仪图像强度定标的方法. 太阳射电图像中包含着太阳圆盘的结构信息, 利用射电日像仪短基线的可视度函数拟合第一类贝塞尔函数, 可以得到图像中宁静太阳圆盘的射电半径和强度, 再利用瑞利-金斯定律和每天的太阳射电流量可以计算得到每天图像的定标因子$G_c$, 从而实现对MUSER图像强度的定标. 将该方法应用到MUSER的实际观测数据中, 包括宁静太阳和有太阳射电爆发等不同的情况, $G_c$的误差基本不超过10%, 得到的宁静太阳亮温度与其他宁静太阳的结果具有较高的相关性, 表明了此方法的可行性和有效性.  相似文献   

12.
The Astronomical Röntgen Telescope X-ray Concentrator (ART-XC) is a hard X-ray telescope with energy response up to 30 keV, to be launched on board the Spectrum Röntgen Gamma (SRG) spacecraft in 2018. ART-XC consists of seven identical co-aligned mirror modules. Each mirror assembly is coupled with a CdTe double-sided strip (DSS) focal-plane detector. Eight X-ray mirror modules (seven flight and one spare units) for ART-XC were developed and fabricated at the Marshall Space Flight Center (MSFC), NASA, USA. We present results of testing procedures performed with an X-ray beam facility at MSFC to calibrate the point spread function (PSF) of the mirror modules. The shape of the PSF was measured with a high-resolution CCD camera installed in the focal plane with defocusing of 7 mm, as required by the ART-XC design. For each module, we performed a parametrization of the PSF at various angular distances Θ. We used a King function to approximate the radial profile of the near on-axis PSF (Θ < 9 arcmin) and an ellipse fitting procedure to describe the morphology of the far off-axis angular response (9 < Θ < 24 arcmin). We found a good agreement between the seven ART-XC flight mirror modules at the level of 10%. The on-axis angular resolution of the ART-XC optics varies between 27 and 33 arcsec (half-power diameter), except for the spare module.  相似文献   

13.
The measured and calibrated coordinates of selenodetic control points on 35 Pic-du-Midi negatives obtained by the method of star-calibrated lunar photography (cf. Moutsoulas, 1970) are presented in this paper.Paper dedicated to Professor H. C. Urey on the occasion of his 80th birthday on 29 April 1973.Work supported under Contract F 61052-68-C-0002 and Grant AFOSR-72-2261 between the Aerospace Office of Scientific Research, U.S. Air Force, and the University of Manchester in England.  相似文献   

14.
The Spectral Irradiance Monitor: Measurement Equations and Calibration   总被引:2,自引:0,他引:2  
The Spectral Irradiance Monitor (SIM) is a satellite-borne spectrometer aboard the Solar Radiation and Climate Experiment (SORCE) that measures solar irradiance between 200 and 2700 nm. This instrument employs a Fèry prism as a dispersing element, an electrical substitution radiometer (ESR) as the primary detector, and four additional photodiode detectors for spectral scanning. Assembling unit level calibrations of critical components and expressing the sensitivity in terms of interrelated measurement equations supplies the instrument's radiant response. The calibration and analysis of the spectrometer's dispersive and transmissive properties, light aperture metrology, and detector characteristics provide the basis for these measurement equations. The values of critical calibration parameters, such as prism and detector response degradation, are re-measured throughout the mission to correct the ground-based calibration.  相似文献   

15.
对拼接主镜进行主动控制是拼接镜技术的难点之一,8 m环形拼接太阳望远镜主动光学的控制性能主要取决于倾斜探测的精度与控制模型建立的准确程度。在研制主动控制系统时,需要对倾斜探测精度定标以及建立较为准确的控制模型,即对主动控制系统定标。实验系统中搭建了用于实时探测拼接子镜倾斜的夏克-哈特曼波前传感器,并对其重复测量精度进行了定标,精度达到0.014 arcsec,接近8 m环形太阳望远镜面形控制的要求。然后利用边缘传感器和夏克-哈特曼波前传感器测量了两镜主动控制系统的控制矩阵,建立较为准确的控制模型。  相似文献   

16.
The Planetary Fourier Spectrometer (PFS) experiment on board the Mars Express mission has two channels covering the 1.2-5.5 μm short wavelength channel (SWC) and the 5.5-45 μm (LWC). The SWC measures part of the thermal emission spectrum and the solar reflected spectrum of Mars between 1700 and 8200 cm−1 with a spectral resolution of 1.3 cm−1, in absence of apodisation. We present here the calibration of this channel and its performance. The instrument calibration has been performed on ground, before launch, in space during near earth verification (NEV) measurements, and at Mars. Special attention has been given to the problem of microvibrations on board the spacecraft.In order to obtain correct results, the source-instrument-detector interaction for the thermal part is studied very accurately. The instrument shows a nonlinear behaviour with source intensity. The SNR increases with amplification, hence high gain factors are usually used. The detector is, in space, cooled by a passive radiator, and works around 210-215 K. The calibration source (an internal lamp) shows variations during a pericentre pass and therefore impose a complex procedure for the SW channel calibration. Mechanical microvibrations strongly affect part of the spectrum. We discuss the validity of the present calibration, and indicate possible future developments. Samples of the calibrated data are given to show the performance of the experiment and its scientific potentialities.  相似文献   

17.
We report a new approach to the calibration of the radiometric asteroid scale using the recent accurate occultation measurements of the diameters of 2 Pallas and 3 Juno, and the Voyager diameter of J4 Callisto, and new infrared photometry of these objects obtained with the NASA 3-m Infrared Telescope Facility. This calibration is internally consistent to better than 5% and probably has an absolute accuracy of ±5%. A revision of the TRIAD radiometric diameters downward is required to bring them into agreement with the new calibration.  相似文献   

18.
CHAMP加速仪资料的快速校标研究   总被引:1,自引:0,他引:1  
对星载加速仪进行校标是有效利用星载加速仪测量数据的基础,目前校标方法都是建立在星载GPS资料处理的基础上,对处理软件和计算设备的要求都非常高.为了满足高层大气阻力研究的需要,提出了一种快速高效的校标方法,即利用GFZ公布的CHAMP卫星快速轨道作为观测资料,采用有尺度因子和线性偏差的加速仪测量值代替非引力模型摄动加速度...  相似文献   

19.
The LASCO-C3 coronagraph on SOHO, launched in December 1995, has been collecting images of the corona and background star fields in a regular manner since 1996. This instrument contains a number of broadband filters with various passbands in the range between 400 and 1100 nm. The filter used most often has been the Clear filter (400–900 nm) but there are four other filters with about 100 nm passbands that are also used periodically. Preliminary calibration of the C3 optical system was done before flight and a number of techniques that use star intensities or magnitudes and position have been applied during flight. In order to understand the long-term behavior of the C3 instrument, we have recently performed an analysis of LASCO data that examines the observed intensities of a set of moderately bright stars whose spectra is known from 13 color photometry. Using these star spectra and the observed count rates we have derived the photometric calibration factors of the C3 coronagraph for all five color filters with an absolute precision of about ± 7%. Observations with the Clear filter have been used to look for long-term trends in the instrument sensitivity. The observations indicate a very slight decrease in the instrument sensitivity of about 3.5% over the 8 years studied here.  相似文献   

20.
The Solar Optical Telescope (SOT) onboard Hinode aims to obtain vector magnetic fields on the Sun through precise spectropolarimetry of solar spectral lines with a spatial resolution of 0.2 – 0.3 arcsec. A photometric accuracy of 10−3 is achieved and, after the polarization calibration, any artificial polarization from crosstalk among Stokes parameters is required to be suppressed below the level of the statistical noise over the SOT’s field of view. This goal was achieved by the highly optimized design of the SOT as a polarimeter, extensive analyses and testing of optical elements, and an end-to-end calibration test of the entire system. In this paper we review both the approach adopted to realize the high-precision polarimeter of the SOT and its final polarization characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号