共查询到20条相似文献,搜索用时 11 毫秒
1.
The Bouguer gravity is the combination of field sources in different depths. Based on the multi-scale analysis of the Bouguer gravity, we can get the gravity anomaly caused by the Moho undulation. This study presents the various orders of approximation of gravity anomaly in North China Craton (NCC), the possible source depths with radial logarithmic power spectrum, and the relationship between the deep structure and gravity anomaly. Furthermore, we discuss the isostatic compensation about the Moho depth from gravity and deep seismic sounding profiles (DSS). The results show that: (1) the fourth approximation could have resulted from the Moho undulation, (2) in contrast to the isostatic Moho, the inverted gravity Moho and the DSS Moho show that most of NCC has been isostatically compensated, and (3) the isostatic compensation rate has some close relation to the seismicity. 相似文献
2.
Sensible heat flux greatly influences the Indian monsoon. In this study, we calculated sensible heat flux time‐series for 12 sites over the western Tibetan Plateau using Price and Dunne's formula and adjusting the stability function. The time‐series were derived from the field observations from the GEWEX Asian Monsoon Experiment (GAME)/Tibet programme under the Global Energy and Water Cycle Experiment (GEWEX). This paper demonstrates that monthly sensible heat fluxes show strong correlations with corresponding precipitation, and that the correlation coefficients increase with precipitation amount. The preceding winter and spring solid precipitation (snowfall and resulting snowpack) can also influence sensible heat flux in May, but the situation is complex. The correlations between heat flux and snowfall at Amdo, Naqu, and Lhasa are negative, but they are positive at Gaize (also known as Gerze) and Dingri. There is a significant relationship between how the variations from the mean calculated heat fluxes at Amdo differ from those at Rikaze, or Dingri, Cuona and Longzi, and their respective June–September precipitation amounts. This phenomenon may result from changes in circulation. When the sensible heat fluxes are above average north of the influence of the Indian monsoon and below average to the south, the summer monsoon circulation develops early and with greater intensity and precipitation, and vice versa. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
3.
The scale issue is of central concern in hydrological processes to understand the potential upscaling or downscaling methodologies, and to develop models for scaling the dominant processes at different scales and in different environments. In this study, a typical permafrost watershed in the Qinghai‐Tibet Plateau was selected. Its hydrological processes were monitored for 4 years from 2004 to 2008, measuring the effects of freezing and thawing depth of active soil layers on runoff processes. To identify the nature and cause of variation in the runoff response in different size catchments, catchments ranging from 1·07 to 112 km2 were identified in the watershed. The results indicated that the variation of runoff coefficients showed a ‘V’ shape with increasing catchment size during the spring and autumn seasons, when the active soil was subjected to thawing or freezing processes. A two‐stage method was proposed to create runoff scaling models to indicate the effects of scale on runoff processes. In summer, the scaling transition model followed an exponential function for mean daily discharge, whereas the scaling model for flood flow exhibited a linear function. In autumn, the runoff process transition across multiple scales followed an exponential function with air temperature as the driving factor. These scaling models demonstrate relatively high simulation efficiency and precision, and provide a practical way for upscaling or downscaling runoff processes in a medium‐size permafrost watershed. For permafrost catchments of this scale, the results show that the synergistic effect of scale and vegetation cover is an important driving factor in the runoff response. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
Wenguang Zhang Bin Cheng Zhibin Hu Shuqing An Zhen Xu Yongjun Zhao Jun Cui Qing Xu 《水文研究》2010,24(22):3270-3280
To investigate the water circulation of eastern Qinghai‐Tibet plateau during rainy season, water samples of precipitation, throughfall, fog, soil, litter and xylem were collected for stable isotope analysis. The results showed that precipitation mainly originated as a result of the East Asian Monsoon, and the secondarily evaporated water from subalpine ecosystem was an important part in local atmospheric water cycle. The deuterium excess of rainfall in the alpine meadow was evidently higher than the precipitation in the Dengsheng stations. This suggests that a large part of precipitation in alpine meadow was derived from secondarily evaporated water and the mean contribution was 39·57%, about 3·65 mm produced shortly after rain events. Through the contrast of delta (d)‐excess value in different water samples, it could be concluded that the water in subalpine shrubland and transpiration of subalpine dark coniferous forest were the main source of secondarily evaporated water that transferred to alpine meadow. Hence, the precipitation on the east Qinghai‐Tibet plateau was doubly controlled by monsoon and local water circulation in alpine ecosystems. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
A. N. Grushinskii 《Izvestiya Physics of the Solid Earth》2017,53(1):92-107
The paper addresses the study of the Antarctic lithosphere. Based on the new gravimetric and seismic data, the refined model of the Moho depth is constructed. New estimates of the isostatic state are obtained for the Antarctic and Southern Ocean. The interpretation of the results is presented. 相似文献
6.
Thus far, measurements and estimations of actual evapotranspiration (ET) from high‐altitude grassland ecosystems in remote areas like the Qinghai‐Tibetan plateau are still insufficient. To address these issues, a comparison between the results of the eddy covariance (EC) measurements and the estimates, considering the Katerji and Perrier (KP), the Todorovic (TD) and the Priestley–Taylor (PT) models, was carried out over an alpine grassland (38o03'1.7'' N, 100o 27’ 26'' E; 3032 m a.s.l.) during the growing seasons in 2008 and 2009. The results indicated that the KP model after a particularly simple calibration gave the most effective ET values in different time scales, the PT model slightly underestimate ET at night and the TD model significantly overestimated ET at noon. In addition, the canopy resistance calculated by the TD model was completely different from that calculated using the inverted EC‐measured data and the KP model, which may be due to some unrealistic assumptions made by the TD model. The KP parameters were a = 0.17 and b = 1.50 for the alpine grassland and appeared to be interannually stable. However, the PT parameter showed some interannual variations (α = 0.83 and 0.74 for 2008 and 2009, respectively). Therefore, the KP model was preferred to estimate the actual ET at both hourly and daily time scales. The PT model, being the simplest approach and field condition dependent, was recommended when available weather data were rare. On the contrary, the TD model always overestimated the actual ET and should be avoided in case of the alpine grassland ecosystems. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
The gravity anomaly has been computed above isostatic, thermally-balanced speading centers that cool by conduction through their top surfaces. Isothermal, and therefore isodense, surfaces were treated as topographic boundaries between layers of different density, and Fourier transforms of power series of the topographic height were used to find the gravity. Convergence requires that the anomaly tend to zero with increasing distance from the ridge crest, and when this is obtained, a crestal positive anomaly is flanked by compensating negatives. Both the magnitude and the spatial width of the anomalies decrease with increasing spreading rate.The ~5 mgal gravity anomalies observed over fast-spreading ridges are matched well by the calculations, but slow-spreading ridges usually have a central rift valley in place of the smooth crest of the idealized isostatic thermal model. The mass deficiency of the valley cancels out the ~40 mgal positive peak that would otherwise occur. The short-wavelength anomaly amplitudes of such ridges are less than 25 mgal and follow the observed local rift valley and flanking ridge topography closely. Excess positive gravity and topography of the flanking ridges suggests compensation of the mass deficiency in the rift valley. However, long-wavelength gravity anomalies such as those observed in the northern Mid-Atlantic cannot be due to topography that is isostatically compensated at a shallow depth. These must be caused either by dynamic forces or by large-scale density differences compensated at much greater depths. 相似文献
8.
Yanhui Qin Tonghua Wu Xiaodong Wu Ren Li Changwei Xie Yongping Qiao Guojie Hu Xiaofan Zhu Weihua Wang Wen Shang 《水文研究》2017,31(26):4647-4659
The long‐term and large‐scale soil moisture (SM) record is important for understanding land atmosphere interactions and their impacts on the weather, climate, and regional ecosystem. SM products are one of the parameters used in some Earth system models, but these records require evaluation before use. The water resources on the Qinghai–Tibet Plateau (QTP) are important to the water security of billions of people in Asia. Therefore, it is necessary to know the SM conditions on the QTP. In this study, the evaluation metrics of multilayer (0–10, 10–40, and 40–100 cm) SM in different reanalysis datasets of the European Centre for Medium‐Range Weather Forecasts interim reanalysis (ERA‐Interim [ERA]), National Centers for Environmental Prediction Climate Forecast System and the Climate Forecast System version 2 (CFSv2), and China Meteorological Administration Land Data Assimilation System (CLDAS) are compared with in situ observations at 5 observation sites, which represent alpine meadow, alpine swamp meadow, alpine grassy meadow, alpine desert steppe, and alpine steppe environments during the thawing season from January 1, 2011, to December 31, 2013, on the QTP. The ERA SM remains constant at approximately 0.2 m3?m?3 at all observation sites during the entire thawing season. The CLDAS and CFSv2 SM products show similar patterns with those of the in situ SM observations during the thawing season. The CLDAS SM product performs better than the CFSv2 and ERA for all vegetation types except the alpine swamp meadow. The results indicate that the soil texture and land cover types play a more important role than the precipitation to increase the biases of the CLDAS SM product on the QTP. 相似文献
9.
Both the inflow and outflow of supra‐permafrost water to lakes play important roles in the hydrologic process of thermokarst lakes. The accompanying thermal effects on the adjacent permafrost are required for assessing their influences on the development of thermokarst lakes. For these purposes, the lake water level, temperature dynamics, and supra‐permafrost water flow of a lake were monitored on the Qinghai‐Tibet Plateau. In addition, the spatial and temporal variation of the active layer thickness and permafrost distribution around the lake were investigated by combining ground penetrating radar, electrical resistivity tomography, and borehole temperature monitoring. The results revealed that the yearly unfrozen supra‐permafrost water flow around the lake lasted approximately 5 months. The temperature and water level measurements during this period indicate that the lake water was recharged by relatively colder supra‐permafrost water from the north‐western lakeshore and was discharged through the eastern lakeshore. This process, accompanied by heat exchange with the underlying permafrost, might cause a directional difference of the active layer thickness and permafrost characteristics around the lake. Specifically, the active layer thickness variation was minimal, and the ice‐rich permafrost was found adjacent to the lakeshore along the recharge groundwater pathways, whereas a deeper active layer and ice‐poor permafrost were observed close to the lakeshore from which the warm lake water was discharged. This study suggests that the lateral flow of warm lake water can be a major driver for the rapid expansion of thermokarst lakes and provides clues for evaluating the relationships between the thermokarst expansion process and climate warming. 相似文献
10.
基于球坐标系的地球物理反演能有效避免地球曲率的影响, 适用于大尺度构造研究.本文基于重力异常数据在球坐标系下反演莫霍面深度, 结合数据误差及光滑正则化项建立反演目标函数并求解, 同时将该方法应用于苏拉威西地区.苏拉威西地区具有复杂的断裂系统、年轻的俯冲带, 是研究俯冲起始机制等前沿科学问题的理想场所.目前研究区的地球物理观测尚不充分, 缺乏对莫霍面形成有效约束的地震数据, 对研究区莫霍面的整体认识较少.本文基于卫星重力观测数据, 通过匹配滤波方法提取与研究区莫霍面结构相关的重力异常, 并结合频谱分析确定该地区的莫霍面深度参考值.在反演中, 通过两次随机子抽样交叉验证选择最优的超参数, 包括正则化因子、莫霍面密度差以及参考莫霍面深度, 迭代反演获得莫霍面深度.反演结果表明: 研究区莫霍面平均深度为20.0 km, 深度变化范围为9.2~33.3 km.总体上, 海区莫霍面浅, 约10.0~20.0 km, 陆区莫霍面深, 约25.0~33.0 km, 该结果与Crust1.0全球模型、前人重力反演结果以及地震数据基本相符, 总体上反映了苏拉威西地区的莫霍面变化特征.
相似文献11.
Petrogensis and tectonic setting of the Yemaquan granite from the iron‐polymetallic ore area of Qimantag,Eastern Kunlun Mountains,Qinghai–Tibet Plateau 下载免费PDF全文
Aikui Zhang Xuanxue Mo Wanming Yuan Nimat U. Khattak Chengyou Feng Wenquan Zhang Guanglian Liu Xiangyang Jing Nana Hao 《Island Arc》2017,26(4)
Being a part of the Paleo‐Tethys Ocean, closing of the Buqingshan‐Anyemaqen oceanic basin left a rich geologic record in the East Kunlun Orogenic Belt. The genesis and tectonic setting of the granites including quartz monzodiorite, granodiorite and mozogranite is discussed in light of the geochemical and U–Pb chronological data obtained. U–Pb dating studies on zircon from the quartz monzodiorite and monzogranite of the research area yielded ages of 220.11 ± 0.49 Ma ((Mean Square Weighted Deviates) MSWD = 0.046) and 223.33 ± 0.54 Ma (MSWD = 0.14), respectively, by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA–MC–ICP–MS) method. According to sedimentological and structural investigations, the Paleo‐Tethys Ocean in the Qimantag region began to close at about 235 Ma, and completely disapperared at about 220 Ma. The three types of granites in this study are considered to intrude the syn‐ to post‐collisional stages. The quartz monzodiorite and granodiorite belong to the I‐type granite whereas the monzogranite is of the S‐type granite. These two types of granites were formed by different ways of partial melting: first, partial melting of the lower crust took place as a result of asthenosphere upwelling triggered by break‐up of the leading edge or tearing of the descending oceanic slab. Subsequently partial melting of the middle–lower crust was caused by the underplating of basaltic magma formed by partial melting of the mantle wedge fluxed by fluids liberated by the oceanic slab dehydration. The magma responsible for the formation of S‐type granites appears to have originated from partial melting of the upper crustal material at a shallower level with a clear signature of continental crust. 相似文献
12.
Featuresofisostaticgravityanomalyandseis┐micactivityintheCentralAsianregionSHENG-MINGFANG1)(方盛明)RUIFENG2)(冯锐)CHANG-ZHENGTIAN... 相似文献
13.
本文通过对羌塘盆地内49个临时宽频带地震观测台阵数据的接收函数分析,采用H-κ叠加和CCP 叠加成像两种方法,获得到了藏北羌塘中部莫霍面深度以及泊松比分布.作为羌塘盆地构造单元的南缘边界,班公湖-怒江缝合带下的Moho存在一个南深北浅、断距约10 km的台阶;把羌塘盆地分为两部分的羌塘中央隆起带下存在一个3 km的Moho台阶;北羌塘盆地下的Moho 平均深度约为60 km,而南羌塘约为63 km.羌塘高原下的近水平Moho结构可能是受到印度大陆北向俯冲作用下的青藏高原隆升过程中Moho再均衡所致或者与其构造演化有关.泊松比值具有明显的构造分区特征,如南羌塘下的泊松比平均为0.31,双湖缝合带下的泊松比接近正常值,为0.265,而北羌塘的泊松比平均为0.285. 相似文献
14.
The availability of digital elevation databases representing the topographic and bathymetric relief with global homogeneous coverage and increasing resolution permits the computation of crust-related Earth gravity models, the so-called topographic/isostatic Earth gravity models (henceforth T/I models). Although expressing the spherical harmonic content of the topographic masses, the interpretation purpose of T/I models has not been given the attention it deserves, apart from the fact that they express some degree of compensation to the observed spectrum of the topographic heights, depending on the kind of the applied compensation mechanism. The present contribution attempts to improve the interpretation aspects of T/I Earth gravity models. To this end, a rigorous spectral assessment is performed to a standard Airy/Heiskanen T/I model against different CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), Gravity field and steadystate Ocean Circulation Explorer (GOCE) satellite-only, and combined gravity models. Different correlation bandwidths emerge for these four groups of satellite-based gravity models. The band-limited forward computation of the models using these bandwidths reproduces nicely the main features of the applied T/I model. 相似文献
15.
16.
西藏高原南北向裂谷研究意义 总被引:8,自引:1,他引:8
强烈遭受南北向挤压下的西藏高原上却发育了大量的正在活动着的东西向伸展构造,即裂谷系。特别是在挤压力最为集中的喜马拉雅碰撞弧的前方,拉萨地体内发育了大规模、有规律排列的近南北向裂谷系。目前,在拉萨地体内,开展了大量的地球物理探测和地质研究工作,如亚东——格尔木地学断面,INDETPH,中法合作项目等。鉴于当时的认识和科学研究目标,这些成果并没有把所有的裂谷系所发育的环境作为一个整体去研究。因此,裂谷系的深部过程及其原由还是知之甚少。本文在总结前人研究成果的基础上认为,从整个岩石圈流变学结构去研究藏南近南北向裂谷系将有助于去认识其产生这些裂谷系的深部动力学过程,进而能够更好地去认识西藏高原隆升的地球动力学过程。 相似文献
17.
重力空白区数据填补的一个主要方法是基于地壳均衡理论进行的,该方法亦用于EGM系列模型的构建中.本文研究了地形数据在构制地形/均衡重力场模型中的应用,分析了补偿深度对Airy位模型和面凝聚位模型的影响,给出二者的最佳补偿深度分别为50 km和40 km.以纯卫星重力模型为参考,后者在前120阶的精度要高于前者,但在121~250阶的精度较低,组合模型精度高于单一模型精度.对地形/均衡地球重力场模型进行了EGM2008拟稳分析,研究了不同分辨率基准的拟稳效果,分析表明:30'分辨率的拟稳基准所得拟稳模型对应的阶方差与参考阶方差曲线直到360阶都有较好的一致性,以EGM2008为基准,其相对累计大地水准面高误差在140阶时为6.83cm,相对累计重力异常误差在220阶时为1.10 mGal. 相似文献
18.
在阻尼最小二乘法的基础上,提出了利用重力进行三维密度反演的选权拟合法,并利用密度分布的特点构造了约束权矩阵.为了改善单一重力反演的非唯一性,利用地震面波层析成像资料进行约束,得到了青藏高原不同深度高分辨率三维密度异常分布图.反演结果显示,青藏高原地壳内密度很不均匀,不同块体具有不同的密度异常特征,拉萨和羌塘地体为低的负密度异常区,松潘-甘孜地体东部存在较低的负密度异常区,塔里木盆地存在较高的正密度异常区.从中部到东部,上地壳物质存在差异,而下地壳物质存在一定连续性. 相似文献
19.
本文基于Vening Meinesz区域均衡模型,通过试验不同参数计算Vening Meinesz均衡补偿深度,将其与CRUST1.0模型给出的莫霍面深度进行拟合,得到适应于天山及邻区的平均补偿深度、"地区性指标"以及区域补偿半径.结合地球重力场模型EIGEN-6C4与地形数据,利用球冠体积分方法进行地形效应、沉积层效应计算和均衡校正,得到了研究区的Vening Meinesz均衡重力异常.结果显示天山及邻区的均衡重力异常幅值在-110~120 mGal之间,表明了天山及周边盆地岩石圈所处于的均衡状态,同时揭示了研究区的壳幔密度分布特征.天山、塔里木盆地、准噶尔盆地等块体的地壳垂向形变可能部分地由均衡调整引起,且均衡调整趋势与地面形变测量结果相契合.通过对均衡重力异常成因的解释,从地壳均衡角度分析了该地区复杂的构造背景及其新生代以来的演化历程. 相似文献
20.
川西藏东地区是青藏高原物质东移、转而向东南运移的通道地域,该处强烈的构造活动和频发的地震即是由于其深部物质的分异、调整和运移所致.为此,在该地域沿30°N设置了一条跨越特提斯构造域和扬子克拉通不同构造单元的剖面,依据Airy重力均衡理论求取该剖面沿线的理论均衡地壳厚度,并与根据天然地震和人工源地震资料所求得的实际地壳厚度进行对比分析,以探讨该区壳、幔物质的地壳均衡状态.研究结果发现,在本剖面沿线呈现出两处大的均衡异常区,即与四川盆地相比其差异显著,均衡异常强度高、且范围广.在此基础上通过对地壳重力场均衡效应与强烈地震活动之间关系的分析与探讨.认为存在均衡异常的地区是强震发生的主要地带,而由均衡区向不均衡区过度的均衡异常梯度带则是强震预防的重中之重. 相似文献