首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
A model of the aqueous phase processing of an aerosol population undergoing multiple cycling through a stratocumulus (Sc) cloud layer is presented. Results indicate that a significant modification of the aerosol properties is achieved following the first cycle through cloud. In a polluted atmosphere, further modification in subsequent cycles is seen to be hydrogen peroxide limited unless there is a flux of ammonia entering the system through cloud base (CB). The modification of the aerosol population is seen to have little effect on the microphysics (specifically the cloud droplet concentration and effective radius) of the processing cloud. However, it enables processed aerosols to subsequently act as efficient cloud condensation nuclei (CCN) in less vigorous clouds (as a result of reducing the critical supersaturation required to activate them). The effects of variations in the internal mixture of soluble components of aerosols on the microphysics of clouds forming on them are also investigated using the cloud model. A (K2) parameterisation of the effects of variations in internally mixed nitrate loadings on the cloud droplet number concentration is presented. The effects of applying this K2 correction to the droplet number (derived from a parameterisation based on sulphate) for the presence of nitrate in aerosol have been investigated using the HadAM3 version of the Hadley Centre General Circulation Model (GCM). The effect on global annual mean simulations of the indirect forcing and effective radius is small, but more pronounced regionally. Suggestions (based on model results and observations) for parameterising the size distribution and in-cloud growth of aerosols for use in GCMs are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号