首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M.S. Barbano 《地学学报》1993,5(5):467-474
During 1770–1820 Northeastern Italy was hit by a series of high intensity earthquakes affecting the Piedmont area of Friuli from Maniago to Tolmezzo. Greater knowledge of these events, which seem to be extremely circumscribed and to have damaged only a small number of localities (1776, 1789, 1794: Tramonti; 1788, 1790: Tolmezzo; 1812: Cavasso), could make a significant contribution towards defining better the potential seismic hazard in Northern Friuli. A review of these shocks has been undertaken within the framework of activities organized by the macroseismic working group of the National Group for Protection against Earthquakes (GNDT). The critical revision of the information gathered by the programme ‘analysis through the compilations’, has stressed the need for a new interpretative method and for great caution to be exercised when assessing reliable intensity degrees, to avoid possible inconsistencies in their values. This preliminary investigation allowed us to identify both doubtful and some misestimated shocks. A rough macroseismic intensity distribution pattern of each event, showing that the earthquakes were felt over an area (including Italian, Slovene and Austrian territories) coherent with the epicentre intensity, has been also delineated.  相似文献   

2.
The results of seismic studies on the Friuli May 6, 1976 earthquake based on historical and seismological data collected by the OGS are presented. The epicenter and hypocenter distributions reconstructed from the Friuli networks and from Trieste WWSS Station are examined. The earthquakes of Latisana (1975–1976) are interpreted as the foreshocks of the main shock of May 6. Parameters of larger shocks are calculated. At the end a correlation between the hypocenters and the involved geodynamic structure of the region is proposed.  相似文献   

3.
We present an overview of the seismogenic sources of northeastern Italy and western Slovenia, included in the last version of the Database of Individual Seismogenic Sources (DISS 3.0.2) and a new definition of the geometry of the Montello Source that will be included in the next release of the database. The seismogenic sources included in DISS are active faults capable of generating Mw > 5.5 earthquakes. We describe the method and the data used for their identification and characterization, discuss some implications for the seismic hazard and underline controversial points and open issues.In the Veneto–Friuli area (NE Italy), destructive earthquakes up to Mw 6.6 are generated by thrust faulting along N-dipping structures of the Eastern Southalpine Chain. Thrusting along the mountain front responds to about 2 mm/a of regional convergence, and it is associated with growing anticlines, tilted and uplifted Quaternary palaeolandsurfaces and forced drainage anomalies. In western Slovenia, dextral strike–slip faulting along the NW–SE trending structures of the Idrija Fault System dominates the seismic release. Activity and style of faulting are defined by recent earthquakes (e.g. the Ms 5.7, 1998 Bovec–Krn Mt. and the Mw 5.2, 2004 Kobarid earthquakes), while the related recent morphotectonic imprint is still a debated matter.We reinterpreted a large set of tectonic data and developed a segmentation model for the outermost Eastern Southalpine Chain thrust front. We also proposed the association of the four major shocks of the 1976 Friuli earthquake sequence with individual segments of three major thrust fronts. Although several sub-parallel active strike–slip strands exist in western Slovenia, we were able to positively identify only two segments of the Idrija Fault System. A comparison of the regional GPS velocity with long-term geological slip-rates of the seismogenic sources included in DISS shows that from a quarter to half of the deformation is absorbed along the external alignment of thrust faults in Veneto and western Friuli. The partitioning of the deformation in western Slovenia among the different strike–slip strands could not be quantified.  相似文献   

4.
The 1511 Western Slovenia earthquake (M = 6.9) is the largest event occurred so far in the region of the Alps–Dinarides junction. Though it strongly influences the regional seismic hazard assessment, the epicenter and mechanism are still under debate. The complexity of the active tectonics of the Alps–Dinarides junction is reflected by the presence of both compressional and transpressional deformations. This complexity is witnessed by the recent occurrence of three main earthquake sequences, the 1976 Friuli thrust faulting events, the 1998 Bovec–Krn Mountain and the 2004 Kobarid strike-slip events. The epicenters of the 1998 and 2004 strike-slip earthquakes (Ms = 5.7 and Ms = 4.9, respectively) lie only 50 km far from the 1976 thrust earthquake (Ms = 6.5).We use the available macroseismic data and recent active tectonics studies, to assess a possible epicenter and mechanism for the 1511 earthquake and causative fault. According with previous works reported in the literature, we analyze both a two-and a single-event case, defining several input fault models. We compute synthetic seismograms up to 1 Hz in an extended-source approximation, testing different rupture propagations and applying a uniform seismic moment distribution on the fault segments. We extract the maximum horizontal velocities from the synthetics and we convert them into intensities by means of an empirical relation. A rounded-to-integer misfit between observed and computed intensities is performed, considering both a minimized and a maximized databases, built to avoid the use of half-degree macroseismic intensity data points. Our results are consistent with a 6.9 magnitude single event rupturing 50 km of the Idrija right-lateral strike-slip fault with bilateral rupture propagation.  相似文献   

5.
A simplified tectonic scheme for hazard purposes was recently adopted for northeastern Italy, introducing large generalized seismogenic areas containing systems of complex geometry faults. This scheme considers only major faults with documented seismic activity. In the present analysis, a different tectonic scheme, with linear elements as seismogenic sources, is presented. The assessment of the regional seismic hazard is done with the fault rupture model, its most important advantage being the recognition that the length of fault rupture during an earthquake is an important consideration in probabilistic calculations of seismic hazard. Moreover, some structures with no associated seismicity but with notable neotectonic activity are considered, and their contribution to the results investigated. Important uncertainties such as those in the maximum possible magnitude of future earthquakes, in the location of the fault, in the focal depth, and in the attenuation law are accounted for in the calculations and their influence studied. The results identify a seismic belt running from Lake Garda to Friuli and along the Yugoslav coast and are very similar to those already known for Friuli, with the largest values corresponding to the zone around Gemona. Some slight differences in the shape of the areas of equal acceleration are probably due to the delineation of the seismic sources of the proposed model. For a cautious elaboration, some neotectonic lines without present seismicity were added into the fault model. Their contribution is negligible in the areas of highest acceleration, but increases remarkably in the areas where acceleration is not expected to exceed the medium values.  相似文献   

6.
Akio Yoshida 《Tectonophysics》1987,140(2-4):131-143
Seismic activity in the region surrounding the foci is investigated for three severe earthquakes (two with a magnitude of 6.1 and one with a magnitude of 5.3) which have occurred in Japan in recent years. The most conspicuous feature commonly noticed is precursory activation of seismic belts which include the focal regions of main shocks. The repetition of the same pattern in the space-time distribution of earthquake occurrence along the seismic belt is also observed for each case. The precursory activity of seismic belts terminates in rather a short period and, after that, the area around the focus of the forthcoming large earthquake becomes quiescent, which demonstrates the appearance of the seismic gap of the second kind (Mogi, 1979). The periods of seismic quiescence for the cases investigated in this paper are longer than those which are given by the regression relationship between earthquake magnitude and precursor time proposed for example, by Sekiya (1977). However, our definition of anomalous seismic activity is clear, and it is possible to give a physical meaning to it as an increase in the local stress field in the seismic belt. We propose that a kind of coupling between intraplate tectonic blocks, analogous to interplate coupling in the subduction region, is responsible for the formation of the stress field relevant to these earthquakes. Although this is at present only one of the possible viewpoints on the formation of the focal region of large intraplate earthquakes, it may be worthwhile to study various precursory phenomena in-connection with this hypothesis.  相似文献   

7.
The statistical model based on the autocorrelation function reveals only the “stationarity” of the time series but no periodic effect in the occurrence of the shallow shocks in any of the seismotectonic zones of the Alpide-Himalayan belt. On the other hand, the autocorrelation function of the time series of the total seismic energy released annually by shallow earthquakes indicates periodicities ranging from 3 to 12 years which are significant at 5% level in most of the risk zones of the Alpide belt, whereas with the exception of the Pamirs-Hindukush and Tibet regions the periodicities indicated in the Himalayan region are not tenable even at 10% significance level.  相似文献   

8.
References     
Two well‐defined sequences of earthquakes in South Australia were recorded in January and October 1969, these being associated with main shocks of magnitude ML 4.4 and 4.1 respectively. The events occurred in a region of little previous seismic activity, near the boundary of the Adelaide Geosyncline and the Willyama Block.  相似文献   

9.
The 1988 Tennant Creek,northern territory,earthquakes: A synthesis   总被引:2,自引:0,他引:2  

Three large earthquakes with surface‐wave magnitudes 6.3–6.7 on 22 January 1988 were associated with 32 km of surface faulting on two main scarps 30 km southwest of Tennant Creek in the Northern Territory. These events provide an excellent opportunity to study the mechanics of midplate earthquakes because of the abundance of geological and geophysical data in the area, the proximity of the Warramunga seismic array and the ease of access to the fault zone. The 1988 earthquakes were located in the North Australian Craton in an area that had no history of moderate or large earthquakes before 1986. Additionally, no smaller earthquakes from the fault zone were identified at the Warramunga array, which is situated only 30 km from the nearest scarp, between the 1965 installation of the array and 1986. The main shocks were preceded by a swarm of moderatesized (magnitude 4–5) earthquakes in January 1987 and many smaller aftershocks throughout 1987. Careful relocation of all teleseismically recorded earthquakes from the fault zone shows that the 1987 activity was concentrated in an area only 6 km across in the gap between the two main fault scarps. The main shocks also nucleated in the centre of the fault zone near the 1987 activity. Field observations of scarp morphology indicate that the scarp is divided into three segments, each showing primarily reverse faulting. However, whereas the western and eastern segments show movement of the southern block over the northern, the central scarp segment shows the opposite, with the northern block thrust over the southern block.

Analysis of the first arrival times at Warramunga suggests that the three main shocks were associated with the western, central and eastern scarp segments, respectively. The locations of aftershocks determined using data from temporary seismograph arrays in the epicentral area define three inclined zones of activity that are interpreted as fault planes. In the western and eastern portions of the aftershock zone, these concentrations of activity dip to the south at 45° and 35°, respectively, but in the central section the aftershock zone dips to the north at 55°. Focal mechanisms derived from modelling broadband teleseismic data show thrust and oblique thrust faulting for the three main shocks. The first event ruptured unilaterally up and to the northwest on the westernmost fault segment, while the third main shock ruptured horizontally to the southeast. Modelling of repeat levelling data from the epicentral area requires at least three distinct fault planes, with the eastern and western planes dipping to the south and the central plane dipping to the north. The combination of scarp morphology, aftershock distribution and elevation data makes a strong case for rupture of fault planes in conjugate orientation during the 22 January 1988 Tennant Creek earthquakes. More than 20000 aftershocks have been recorded at Warramunga and activity continues to the present‐day with occasional shocks felt in the town of Tennant Creek and some recent off‐fault aftershocks located directly under the Warramunga seismic array. Stratigraphic relationships exposed in trenches excavated across the scarps suggest that during the Quaternary, a large earthquake ruptured the surface along one segment of the 1988 scarps.  相似文献   

10.
本文针对20世纪末欧亚地震带上发生的几次强震造成的人员和财产的重大损失进行了讨论,认为主要原因是城市建筑物抗震能力脆弱,提出21世纪的防震减灾工作重点应转向城市的抗震设防上。  相似文献   

11.
In this paper the features of seismic process in the southern depression of Lake Baikal are considered. By the data on focal mechanisms of the earthquakes of February 25, 1999 (M w = 6.0), and August 27, 2008 (M w = 6.3), as well as based on configuration of their aftershock fields, it is determined that foci of strong seismic events in southern Baikal are controlled by the greatest structural elements of sublatitudinal and submeridional strikes. It has been shown that a substantial role in the formation of focal zones is played by low-scale destruction of the Earth’s crust, revealed by geological-geophysical data and proved by clustering of seismic shocks. New data on the August 27, 2008, earthquake have proved the high level of seismic danger of this part of the Baikal Rift Zone and allowed us to determine generation conditions of strong earthquakes more precisely.  相似文献   

12.
Even though central Virginia is far from the nearest plate boundaries, the region is well-known for minor-to-moderate shocks, which have occurred frequently since at least the eighteenth century. Many of its people have experienced small earthquakes, while infrequent larger ones have caused damage. The largest destructive earthquake (magnitude 5.8) in this seismic zone was recorded in August 2011. Smaller earthquakes that cause little or no damage are felt each year or two. It is difficult to link the earthquakes of this zone to known small faults which are numerous, deeply buried and do not show up at the surface. The mean earthquake depth since 1960 is 6.7 km. On the other hand, central Virginia is a big collector and transporter of precipitation water, which flows to the Atlantic Ocean through the James River and its tributaries. There are about 2,000 abandoned mining sites in Virginia with underground openings that can facilitate the interception and conveyance of surface water. This paper presents evidence that seismic activity in certain zones can be associated clearly with the hydrological effects of abundant precipitation. Such effects can increase tectonic stress, which surpasses the marginal amount when an earthquake occurs. We analyze the cross-correlation between precipitation or water discharge in the rivers and earthquake occurrence in the central Virginia seismic zone. This correlation is examined both over a long-term span (57–92 years) and with regard to individual cases in which earthquakes have followed the occurrence of intense hydrological phenomena such as torrential rainfall or hurricanes. As we probe for a correlation between earthquake time series for central Virginia and the monthly precipitation series at hydrometeorological stations located in the zone, we observe that the best cross-correlation is obtained for a time period of 3 months. The same time period applies to certain historical earthquakes that were preceded by large amounts of precipitation. These results support the hydroseismicity hypothesis, which points to the role of water in the generation of intraplate seismicity.  相似文献   

13.
The series of earthquakes that occurred along the New Madrid Fault System in 1811 and 1812 probably was as large as any earthquakes that ever occurred in eastern North America. The magnitude of each of the four major shocks exceeded M2 = 8.4, and the effects of these shocks were felt with a Modified Mercalli Intensity V or greater over approximately 2.5 million km2. Because the epicenters were located in a sparsely settled region of the American frontier, there was little loss of life or damage. However, eyewitness accounts of those who lived through the shocks have provided striking accounts of the high levels of ground motion the region experienced. Thus, the historical record gives engineering geologists a good indication of the catastrophic damage that could result if earthquakes of similar magnitude would occur today.  相似文献   

14.
The Pacific plate and the Philippine Sea plate overlap and subduct underneath the Kanto region, central Japan, causing complex seismic activities in the upper mantle. In this research, we used a map selection tool with a graphic display to create a data set for earthquakes caused by the subducting motion of the Philippine Sea plate that are easily determined. As a result, we determined that there are at least four earthquake groups present in the upper mantle above the Pacific plate. Major seismic activity (Group 1) has been observed throughout the Kanto region and is considered to originate in the uppermost part of mantle in the subducted Philippine Sea plate, judging from the formation of the focal region and comparison with the 3D structure of seismic velocity. The focal mechanism of these earthquakes is characterized by the down-dip compression. A second earthquake layer characterized by down-dip extension (Group 2), below the earthquakes in this group, is also noted. The focal region for those earthquakes is considered to be located at the lower part of the slab mantle, and the Pacific plate located directly below is considered to influence the activity. Earthquakes located at the shallowest part (Group 3) form a few clusters distributed directly above the Group 1 focal region. Judging from the characteristics of later phases in these earthquakes and comparing against the 3D structure of seismic velocity, the focal regions for the earthquakes are considered to be located near the upper surface of the slab. Another earthquake group (Group 4) originates further below Group 2; it is difficult to consider these earthquakes within a single slab. The seismic activities representing the upper area of the Philippine Sea plate are Group 3. This paper proposes a slab geometry model that is substantially different from conventional models by strictly differentiating the groups.  相似文献   

15.
The authors recently determined seismic parameters of earthquakes located along a lineation of microearthquakes in the Coast Range Province of northern California (Dehlinger and Bolt, 1984). The lineation closely follows the mapped Bartlett Springs fault zone, which is considered to be the source of seismic activity. This fault strikes N40°W for about 40 km and the mapped fault zone consists of a 2–3 km-wide belt of melange. Earthquake hypocenters indicate that this belt dips steeply to the northeast, with shocks occurring along multiple dislocation planes that together extend downward to depths of about 12 km.Focal mechanisms and associated stress fields were determined for 22 of the best recorded recent shocks along the earthquake lineation. Analyses of these shocks provided a comparison between individually and jointly determined focal mechanisms and of the directions of the corresponding stress axes, for identical shocks along the entire fault length. Thirteen of the shocks exhibited right-lateral, San Andreas type of source motions. Average values of these 13 individually determined focal parameters are within the standard deviation of the same set of jointly determined values. It is thus verified that the probability model algorithm for joint parameters determinations developed by Brillinger et al. (1980) yields reliable values of focal parameters. Moreover, the jointly determined parameters appear to be more reliable than the average-determined ones. The focal mechanisms and associated stress fields along the entire length of the Bartlett Springs fault zone are consistent with shearing motions between the North American and Pacific lithospheric plates that produce displacements along the San Andreas transform fault.  相似文献   

16.
河南省地震活动趋势分析   总被引:1,自引:0,他引:1  
河南省东北部属华北地洼区烈震区南延部分,西南部属华中地洼区中强震区。历史上发生5级及5级以上的地震18次,依规律可分淅川-南阳、信阳-商城、菏泽-许昌、安阳-新乡,洛阳-灵宝5个构造地震带,空间分布规律:长期隆起强烈坳陷区;不同构造单元交接处地貌反差明显的下降一侧:新生代后大面积沉降背景下差异下降显著部位;上述部位几组断裂交叉处是发震有利场所。时空迁移规律:南阳、信阳-商城地震活动动向有待进一步研究;菏泽-许昌构造中强震线,地震活动以双震形式跳跃式往返迁移;安阳-新乡构造中强震线。有南北往返递迁规律;豫北不同地震线间有由东向西波浪状转化递迁规律。许昌、安阳-新乡、洛阳-灵宝一带,存在着发生中强地震危险性。  相似文献   

17.
A recent series of Swedish earthquakes at a focal depth not exceeding 2–3 km, the largest with IO = V + (MSK scale) andML = 3.2 shows that relatively strong seismic activity can occur in the uppermost part of the Baltic Shield. During the last 15 years several near-surface earthquakes have occurred in this region, as indicated by recorded Rg-waves and/or macroseismic data. Many events are located along the coast of central Sweden, suggesting a seismic belt of minor, near-surface activity, which should be considered in connection with the radioactive waste storage in the Swedish bedrock. The appearance of Rg, common in seismic records of explosions and rockbursts, is not a sufficient discriminator between artificial events and earthquakes.  相似文献   

18.
地震中多普勒效应可以确定地震的破裂面等,说明对多普勒效应的研究有实际意义,但目前确定地震中是否存在多普勒效应的方法并不成熟。在研究多普勒效应空间分布规律的基础上,提出用小波变换确定地震中是否存在多普勒效应的方法。选择位于汶川地震断层滑动前方的若干台站对台站最初时段的地震记录进行小波变换时,发现随着震中距的增加,小波谱高频幅值明显大于小波谱低频幅值;说明虽然存在介质对地震波的吸收衰减作用,但多普勒效应的存在仍使得小波谱高频幅值增大。选择与汶川地震断层垂直方位的若干台站对台站最初时段的地震记录进行小波变换时,发现随着震中距的增加,小波谱高频幅值迅速降低,震中距大到一定程度后低频部分的小波谱幅值会明显大于高频部分的小波幅值;说明在该方向上,介质对地震波的高频吸收衰减起主要作用,没有发生多普勒效应。  相似文献   

19.
There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its surroundings in the process of the earthquake. This paper introduces the geological background of the Wenchuan earthquake and the profile of in-situ stress monitoring stations. In particular, data of 174 earthquakes (Ms4.0-Ms8.5) were processed and analyzed with various methods, which were recorded at the Shandan station from August 2007 to December 2008. The results were compared with other seismic data, and further analyses were done for the recoded strain seismic waves, co-seismic strain stepovers, pre-earthquake strain valleys, Earth's free oscillations before and after the earthquake and their physical implications. During the Wenchuan earthquake, the strainmeter recorded a huge extensional strain of 70 seconds, which shows that the Wenchuan earthquake is a rupture process predominated by thrusting. Significant precursory strain anomalies were detected 48 hours, 30 hours, 8 hours and 37 minutes before the earthquake. The anomalies are very high and their forms are very similar to that of the main shock. Similar anomalies can also be found in strain curves of other shocks greater than Ms7.0, indicating that such anomalies are prevalent before a great earthquake. In this paper, it is shown that medium aftershocks (Ms5.5-6.0) can also cause Earth's free oscillations. Study of free oscillations is of great significance to understand the internal structure of the Earth and focal mechanisms of earthquakes and to recognize slow shocks, thus providing a scientific basis for the prevention and treatment of geological disasters and the prediction of future earthquakes.  相似文献   

20.
Tilt-strain measurements have been collected since 1977 by several underground stations in the Friuli seismic area (NE Italy) with the aim of detecting seismotectonic deformations. In the work, meteorological effects are initially considered as being able to obscure possible tectonic signals. Two middle-term anomalous signals (tilt and areal strain), not correlated with atmospheric changes, are successively selected for the analysis. They are the strongest and more evident signals recorded in the area after the 1976 destructive seismic events and also are the only two cases of epicentres very near to the recording stations (M = 4.1 and M = 3.9 at 1.8 and 2.9 km, respectively). Evaluations on the basis of micro-cracking and fault creep are carried out. Estimates based on trivial rheological models furnishes crustal viscosity values in agreement with those obtained in the analysis of the silent earthquakes recorded in the same area before the 1976–1977 seismic events. Our data support the hypothesis that prominent precursory signals can be detected only within a distance few times the dimensions of the source area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号