首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigates the temporal and spatial variation of shore-fast ice extent in the north-eastern part of the Kara Sea during 1953-1990 and its sensitivity to interannual variability of the regional climate. The area of fast ice in spring months shows a bimodal distribution. This indicates the existence of two different regimes of fast ice formation driven by the system of prevailing winds. The westward wind transport during the cold season gives larger fast ice extent while the eastward wind transport suppresses the expansion of fast ice. There is a significant correlation (ca. −0.55) between the average winter temperature and the area of fast ice. Linear trends for time records of shore-fast ice area in spring show a decrease during 1953-1990. This decrease is most pronounced in April: the mean fast ice area in April is 12% lower in 1988-1990 compared to 1953-55. A comparison of fast ice regimes for two particular years–1979 and 1985–revealed a significant influence of cyclone activity on fast ice development over the course of the cold season. It is shown that partial break-ups of fast ice in spring 1985 are associated with the passage of cyclones across the area of fast ice.  相似文献   

2.
We present sub-bottom profiling (sparker and Parasound) results from the eastern Kara Sea, on the Eurasian Arctic margin, which enable the identification of the Last Glacial Maximum (LGM) ice extent. The analysed profiles show that glacigenic diamicton is ubiquitous at the seafloor, east of about 95°E and 78°N. The eastern margin of this diamicton is expressed in a conspicuous morainic ridge at the entrance to the Vilkitsky Strait, and to the south the diamicton projection aligns with the LGM limit mapped at the north-western Taymyr. The bottom of the Voronin Trough further north is also covered with diamicton and has numerous erosional bedforms, indicating a streamlined flow of grounded ice along the trough. Accurate dating of the diamicton is not attainable, but the correlation of pre-diamict sediments to well-dated sections in the Laptev Sea, and available 14C ages from sediments on top of the diamicton, indicate its LGM age. These results support the palaeogeographic reconstruction that assumes the extension of the LGM Barents–Kara ice sheet as far east as Taymyr. This configuration implies that LGM ice blocked the drainage of the Ob and Yenisey rivers on the Kara shelf. This inference is consistent with the presence of large (>100 km wide) lenses of basin infill adjacent to the southern margin of the diamicton. However, the limited distribution of the eastern Kara ice lobe, not extending on Severnaya Zemlya, suggests that the ice was fairly thin and short-lived: insufficient for the accumulation of the gigantic proglacial lakes that occurred during earlier glaciations.  相似文献   

3.
Reconstructions of the Late Quaternary glacial history of the Kara Sea area show repeated build-up of ice-sheet domes over the shallow epicontinental Kara Sea. Inferred ice divides were situated over the central Kara Sea, and the ice sheet repeatedly inundated the surrounding coastal areas of western Siberia. Geological fingerprinting of the Kara Sea ice sheet include end moraine zones, raised beaches, tills, glaciotectonic deformations and coarsening-upward sediment sequences, reflecting isostatic rebound cycles. This paper reviews evidence from several areas along the perimeter of the Kara Sea, suggesting that peripheral sites were critical for the initiation of the large Kara Sea ice sheet. Ice-sheet inception progressed with the formation of local ice caps that later coalesced on the adjacent shelf with globally falling sea levels, eventually merging and growing into a large ice dome.  相似文献   

4.
Phytoplankton in the south-western Kara Sea: composition and distribution   总被引:1,自引:0,他引:1  
The taxonomic composition and spatial distribution of pelagic algae were studied in the south-western Kara Sea in August-September 1981. In the north-western and easternmost regions of the study area the phytoplankton community, dominated by neritic diatoms and autotrophic dinoflagellates, was at the late spring bloom stage of the seasonal succession. In the central deep-water zone of the sea, there was a predominance of heterotrophic dinoflagellates from the genera Protoperidinium and Dinophysis , and the autotrophic compartment of the algal community was clearly in a stage of decline. The distribution of the phytoplankton assemblages followed closely the major routes of receding marginal ice zones. Three stages of the seasonal succession were established for the area of interest: (1) early spring (ice edge) bloom of arcto-boreal neritic diatoms; (2) late spring bloom of neritic diatoms and autotrophic dinoflagellates, fuelled by continental run-off; and (3) summer minimum with a predominance of heterotrophic dinoflagellates, followed by autumnal decline of the phytoplankton community.  相似文献   

5.
On the basis of analyzing long-term field data, we investigated the vertical thermal structure of 66 lakes of the North-West of Russia during the freeze-up period. The largest variability in thermal structure is characteristic for low-drainage shallow water bodies. Detailed data were obtained at self-contained buoy stations located in a small Lake Vendyurskoe (southern Karelia) were used to identify water temperature changes at the depths for a winter season as well as making assessments of het flows at the water–bottom and water–ice interfaces. The interannual water temperature variability at the depths reaches 2°C. The main geographical factors influencing the formation of thermal stratifications in the 66 lakes used in the study during the winter period are their mean depth, area, water residence time and geographical latitude. The largest vertical water temperature gradients are characteristic for the group of the smallest and shallow lakes, in the bottom layers of which the water temperature exceeds the temperature of maximum density, whereas in the deep lakes (more than 15 m) the water temperature is below 4°C. The lowest values of water temperature are observed in large lakes. The water temperature in the upper layer (up to 10 m) of drainage water bodies also decreases to 0–1°C as the result of the removal of heat with the river discharge. According to the thermal stratifications, the lakes are categorized as small (shallow, deep and drainage lakes), medium-sized and large shallow and large deep lakes. The suggested regression model permits a typical water temperature to be assessed at standard depths at the end of a winter season for any water body in the study region using available geographical information. The verification of the model is done from independent data for eight lakes of Finland.  相似文献   

6.
Summer sea ice characteristics of the Chukchi Sea   总被引:1,自引:0,他引:1       下载免费PDF全文
During August 1999, we investigated sea ice characteristics; its distribution, surface feature, thickness, ice floe movement, and the temperature field around inter-borders of air/ice/seawater in the Chukchi Sea. Thirteen ice cores were drilled at 11 floe stations in the area of 72°24′ 77°18′N, 153°34′ 163°28′W and the ice core structure was observed. From field observation, three melting processes of ice were observed; surface layer melting, surface and bottom layers melting, and all of ice melting. The observation of temperature fields around sea ice floes showed that the bottom melting under the ice floes were important process. As ice floes and open water areas were alternately distributed in summer Arctic Ocean; the water under ice was colder than the open water by 0.4 2.8℃. The sun radiation heated seawater in open sea areas so that the warmer water went to the bottom when the ice floes move to those areas. This causes ice melting to start at the bottom of the ice floes. This process can balance effectively the temperature fluctuating in the sea in summer. From the crystalline structure of sea ice observed from the cores, it was concluded that the ice was composed of ice crystals and brine-ice films. During the sea ice melting, the brine-ice films between ice crystals melted firstly; then the ice crystals were encircled by brine films; the sea ice became the mixture of ice and liquid brine. At the end of melting, the ice crystals would be separated each other, the bond between ice crystals weakens and this leads to the collapse of the ice sheet.  相似文献   

7.
8.
Uptake rates of NH4+, NO3 and dissolved organic nitrogen (urea) were measured in phytoplankton and in ice algae in the Barents Sea using a 15N-technique. NO3 was the most important nitrogen source for the ice algae (f-ratio = 0.92). The in situ irradiances in the subsurface chlorophyll maximum and in the ice algal communities were low. The in situ NO3 uptake rate in the ice algal communities was light-limited The in situ NO3 and NH4 uptake rates in the subsurface chlorophyll maximum were at times light-limited. It is hypothesised that NH4+ may accumulate in low light in the bottom of the euphotic zone and inhibit the in situ NO3 uptake rate.  相似文献   

9.
The extent of the Barents-Kara Ice Sheet during the eastern Last Glacial Maximum (LGM) is not yet fully known. A detailed echo-sounding survey performed during the Boris Petrov Expedition 2001 permitted the detailed mapping of part of it. Based on the profiling results, a southern connection between the LGM Barents-Kara Ice Sheet and a local ice sheet on Taymyr Peninsula appears to be unlikely. Based on sediment core data and profiling results, most of the terrigenous river-derived material accumulated in the estuaries during late Holocene times, whereas during early Holocene times of lowered sea level major amounts were transported further offshore and accumulated on the shelf. During the post-glacial sea level rise, the main depocentre migrated southward, reaching its present position no earlier than about 6 cal. Ky BP (or 5.2 Kya). Future studies of accelerator mass spectrometry (AMS) 14C-dated sediment cores will allow a detailed reconstruction of the variability of fluvial sediment discharge and the history of glaciation in the Kara Sea during late Quaternary times.  相似文献   

10.
Microbial composition-including microalgae, bacteria and protozoans- and potential metabolic activity of its autotrophic compartment were measured in December 1988 in several micro-environments that characterise the North-West Sector of the marginal area of the Weddell Sea; infiltration and band assemblages of ice floes and adjacent waters were investigated. At the time of ice melting, a shift from a diatom dominated population (ice) to a flagellate dominated population (water column) was observed. Nevertheless, this shift was not due to an "inability" of the ice-diatoms to grow in the water colum. Macro-grazing and/or sedimentation are suggested as possible causes of the disappearance of diatoms during ice melting. The remaining small autotrophic forms released by the ice would constitute a significant seeding stock for the growth of ice-edge blooms.  相似文献   

11.
Three observational data sets are used to construct a continuous record (1850-2001) of April ice edge position in the Barents Sea: two sets of Norwegian ice charts (one from 1850 to 1949 and the other from 1966 to 2001) and Soviet aircraft reconnaissance ice extent charts from 1950 to 1966. The 152-year April ice extent series is subdivided into three sub-periods: 1850-1899, 1900-1949 and 1950-2001. For each of these study sub-periods, a mean April ice edge and a set of anomalies (differences in position between a given April and the mean April ice edge) are computed. The calculations show the mean ice edge position retreated north-eastward over the 152-year period, with the greater retreat seen in the changes from the 1850-1899 sub-period to the 1900-1949 sub-period. The distribution of the standard deviation of the ice edge anomaly over the linear distance along the mean ice edge shows no substantial difference between any of the three periods of the study. Within each study period, the maximum variation is observed in the sector bounded by the 25°E and 49° E meridians, which covers the main pathway of the warmer water flow from the Norwegian Sea.  相似文献   

12.
To examine algae populations, three expeditions (in March 2001, April 2002 and February 2003) were conducted in the Guba Chupa (Chupa Estuary; north-western White Sea), and one cruise was carried out in the open part of the White Sea in April 2003 and in the northern part of the Barents Sea in July 2001. Sea ice algae and phytoplankton composition and abundance and the content of sediment traps under the land-fast ice in the White Sea and annual and multi-year pack ice in the Barents Sea were investigated. The community in land-fast sea ice was dominated by pennate diatoms and its composition was more closely related to that of the underlying sediments than was the community of the pack ice, which was dominated by flagellates, dinoflagellates and centric diatoms. Algae were far more abundant in land-fast ice: motile benthic and ice-benthic species found favourable conditions in the ice. The pack ice community was more closely related to that of the surrounding water. It originated from plankton incorporation during sea ice formation and during seawater flood events. An additional source for ice colonization may be multi-year ice. Algae may be released from the ice during brine drainage or sea ice melting. Many sea ice algae developed spores before the ice melt. These algae were observed in the above-bottom sediment traps all year around. Three possible fates of ice algae can be distinguished: 1) suspension in the water column, 2) sinking to the bottom and 3) ingestion by herbivores in the ice, at the ice-water interface or in the water column.  相似文献   

13.
北极是全球气候和环境变化的驱动器之一,获取北极海冰的时空特征和变化规律对研究北极以及全球气候变化意义重大。格陵兰海是北极海冰剧烈变化的区域之一,采用CryoSat-2的雷达测高数据,获取了格陵兰海的海冰干舷高分布,并利用波弗特环流计划(BGEP)仰视声呐(ULS)数据进行了验证。研究结果表明,格陵兰海海冰干舷高和分布范围存在明显的季节性变化特征,具体体现在格陵兰海海冰从10月份进入冻结期开始,海冰分布范围不断扩张,海冰干舷高也逐渐增大,2月份平均干舷高达到最大(0.2 m),之后格陵兰海海冰开始消融,覆盖范围不断内缩,9月海冰干舷高降至最小(0.13 m)。  相似文献   

14.
贼鸥用于南极环境大型指示生物种的初步研究   总被引:3,自引:0,他引:3       下载免费PDF全文
王自磐 《极地研究》2004,15(2):91-97
对南极长城站附近棕贼鸥(C.s.lonnberg)、灰贼鸥(C.maccormicki)和两者的混合配对(hybrid)的食性与考察站环境质量的相关性进行研究,结果表明,贼鸥的食物结构受站区人类废弃物的直接影响。贼鸥食性构成同时与人类活动和动物生态习性相关而起到双重信息载体作用,可作为南极环境生态评价的重要指标之一,对推动实现南极环境生态评价的量化有重要意义。  相似文献   

15.
利用1961—2015年中国冬季气温资料、中国气象局逐月北极海冰密集度指数资料和美国国家海洋和大气管理局(NCEP/NCAR)环流资料,采用滑动相关、时滞相关及偏相关等分析方法,探讨了秋季北极海冰对中国冬季气温的影响。结果表明,秋季北极海冰改变了后期冬季西西伯利亚高压和华北高压强弱,导致我国西北地区和长江与黄河之间地区冬季气温异常。进一步分析发现,西北地区冬季气温的异常主要是受西西伯利亚高压影响,而长江与黄河之间冬季气温的异常主要是受华北高压影响。而秋季北极海冰通过改变后期冬季欧亚中高纬度环流,进一步影响高原地区冬季气温。  相似文献   

16.
17.
Downward material fluxes under seasonal sea ice were measured using a time-series sediment trap installed at an offshore site in the Okhotsk Sea north of Hokkaido, Japan, from 13 January to 23 March 2005. The maximum fluxes of lithogenic material (753 mg m−2 day−1) and organic matter (mainly detritus; 333 mg m−2 day−1) were recorded during the period in which sea ice drifted ashore and increased in extent, from 13 January to 9 February. Organic matter as fecal pellets (81–93 mg m−2 day−1) and opal as biosilica (51–67 mg m−2 day−1), representing diatom fluxes, were abundant in sediment trap samples obtained during the period of full sea ice coverage from 10 February to 9 March. Microscopic observations revealed that fecal pellets were largely diatom frustules, suggesting that zooplankton actively grazed on ice algae during the period of full sea ice coverage. During the period of retreating sea ice, from 10 to 23 March, the phytoplankton flux showed a rapid increase (from 9.5 to 22.5 × 106 cells m−2 day−1), reflecting their release into the water column as the sea ice melted. Our results demonstrate that the quantity and quality of sinking biogenic and lithogenic materials vary with the seasonal extent of sea ice in mid-winter.  相似文献   

18.
海冰范围的变化对气候变化、生态系统以及人类活动都会产生重大的影响,近年来极地海冰范围的变化受到广泛关注。对南极罗斯海与普里兹湾海域海冰范围进行时间序列分析,研究发现海冰范围季节性变化在罗斯海与普里兹湾海域差异较大,罗斯海地区表现出"快速缩小、迅速扩大"的特性,普里兹湾海域表现出"快速缩小、缓慢扩大"的特性。两地区的海冰范围在年际变化上都表现出扩大的趋势,2003—2014年罗斯海地区海冰变化趋势为(1.39±1.12)×104km2·a~(-1),普里兹湾海域海冰变化趋势为(0.61±0.26)×104km2·a~(-1)。罗斯海地区夏季的年际变化为减少趋势。  相似文献   

19.
基于美国冰雪数据中心的月平均海冰运动和海冰密集度数据, 建立了1979—2015 年罗斯海海冰运动 速度时间变化序列, 揭示了海冰运动速度的年际和季节变化特征, 探讨了海冰运动速度和海冰范围之间可 能存在的联系, 最后对影响海冰运动速度变化的因素进行了分析。结果表明, 1979—2015 年罗斯海海冰运动 速度总体呈现加快趋势, 海冰运动速度增加趋势最快的季节为秋季, 其次是冬季、春季和夏季。冬季海冰平 均运动速度最大, 依次是秋季、春季和夏季。海冰运动速度与海冰范围在37 年间均呈现上升趋势, 海冰范 围变化滞后海冰运动速度1—2 个月, 两者呈显著正相关关系, 海冰运动速度的增加导致罗斯海海冰范围不 断扩张, 进而影响南极整体海冰分布。罗斯海海冰运动速度与风速之间存在显著正相关关系, 风场是影响海 冰运动速度的一个直接因素。除此之外, 海冰运动还受到包括气压场、洋流场以及海洋阻力系数等的影响。  相似文献   

20.
刘玥  庞小平  赵羲  苏楚钦  季青 《极地研究》2018,30(2):161-172
采用美国冰雪数据中心(NSIDC)的日尺度与月尺度海冰密集度数据,将海冰密集度为15%作为阈值确定海冰外缘线位置,提取波弗特海海域的海冰外缘线,计算波弗特海的海冰密集度、海冰范围与海冰面积,然后通过海冰范围与海冰外缘线的年际变化与季节变化来分析波弗特海海冰外缘线退缩的时空变化特征与趋势。实验结果表明,1978—2015年波弗特海的海冰密集度、海冰范围与海冰面积整体变化趋势一致,减少趋势显著。37年来,海冰密集度平均每年减少约0.3%,海冰范围平均每年减少3 235 km2,海冰面积平均每年减少5 084 km2。海冰密集度在1979—1996年无明显减少趋势,1996—2015年减少趋势明显。波弗特海海冰范围一般在9月达到最小值,在11月至次年5月维持在最大值(全冰覆盖状态);海冰面积一般在9月达到最小值,在12月或者1月达到最大值。海冰范围最小值出现时间有延迟的趋势,全冰覆盖状态具有起始时间越来越晚、终止时间越来越早、持续时间越来越短的趋势,平均持续天数为212 d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号