共查询到20条相似文献,搜索用时 15 毫秒
1.
This study assesses historic overbank alluvial sedimentation along a low-gradient reach of West Fork Black's Fork in the northern Uinta Mountains, Utah. In this previously glaciated setting, an alluvial floodplain that is approximately 400 m wide by 1500 m long has been modified by the combined effects of valley morphometry and the recent history of clear-cut logging during the late 19th and early 20th Centuries. To quantify the effects on sedimentation and flow conveyance, three natural streambank exposures were sampled and analyzed for nuclear bomb fallout 137Cs. The distribution of 137Cs within the three profiles suggests that a remnant outwash terrace exerts a first-order control over the deposition of overbank alluvium. Upstream from a constriction in the floodplain caused by the terrace remnant, as much as 40 cm of overbank alluvium has been deposited since the beginning of clear-cut logging. Immediately downstream of that constriction, no evidence exists for any overbank sedimentation during that same period. Vibracore samples and Oakfield soil probe sampling throughout the study reach quantified the geographic extent and thicknesses of the historic alluvial package. Flood conveyance through the study area was modeled using the U.S. Army Corps of Engineers HEC-RAS modeling program. Model simulations were run for modern conditions (using surveyed topography) and for prehistoric conditions (using the modern topography less the historic alluvial package determined by 137Cs analyses). Model results indicate that the floodplain constriction caused a significant impediment to flood conveyance at even modest discharges during prehistoric conditions. This promoted ponding of floodwaters upstream of the constriction and deposition of alluvium. This has increased bank heights upstream of the constriction, to the point that under modern conditions 1- to 5-year recurrence interval floods are largely confined within the channel. These results confirm the validity of this new approach of combining 137Cs dating of alluvial sediments with HEC-RAS flow modeling to compare flood conveyance along a single stream reach prior to and since an abrupt change in alluvial sedimentation patterns. 相似文献
2.
Channel incision is part of denudation, drainage-network development, and landscape evolution. Rejuvenation of fluvial networks by channel incision often leads to further network development and an increase in drainage density as gullies migrate into previously non-incised surfaces. Large, anthropogenic disturbances, similar to large or catastrophic “natural” events, greatly compress time scales for incision and related processes by creating enormous imbalances between upstream sediment delivery and available transporting power. Field examples of channel responses to antrhopogenic and “natural” disturbances are presented for fluvial systems in the mid continent and Pacific Northwest, USA, and central Italy. Responses to different types of disturbances are shown to result in similar spatial and temporal trends of incision for vastly different fluvial systems. Similar disturbances are shown to result in varying relative magnitudes of vertical and lateral (widening) processes, and different channel morphologies as a function of the type of boundary sediments comprising the bed and banks. This apparent contradiction is explained through an analysis of temporal adjustments to flow energy, shear stress, and stream power with time. Numerical simulations of sand-bed channels of varying bank resistance and disturbed by reducing the upstream sediment supply by half, show identical adjustments in flow energy and the rate of energy dissipation. The processes that dominate adjustment and the ultimate stable geometries, however, are vastly different, depending on the cohesion of the channel banks and the supply of hydraulically-controlled sediment (sand) provided by bank erosion.The non-linear asymptotic nature of fluvial adjustment to incision caused by channelization or other causes is borne out in similar temporal trends of sediment loads from disturbed systems. The sediments emanating from incised channels can represent a large proportion of the total sediment yield from a landscape, with erosion from the channel banks generally the dominant source. Disturbances that effect available force, stream power or flow energy, or change erosional resistance such that an excess of flow energy occurs can result in incision. Channel incision, therefore, can be considered a quintessential feature of dis-equilibrated fluvial systems. 相似文献
3.
River mouth bar formation, riverbed aggradation and channel migration in the modern Huanghe (Yellow) River delta, China 总被引:4,自引:1,他引:4
This paper addresses the recent (1970s–1990s) processes of river mouth bar formation, riverbed aggradation and distributary migration in the Huanghe River mouth area, in the light of station-based monitoring, field measurements and remote sensing interpretation. The results show that the morphological changes of the river mouth bar have been closely associated with the largely reduced fluvial discharge and sediment load. Landform development such as bar progradation occurred in two phases, i.e. before and after 1989, which correspond to faster and lower bar growth rates, respectively. Fast riverbed aggradation in the mouth channel was strongly related to river mouth bar progradation. During 1976–1996, about 2.8% of the total sediment loads were deposited in the river channel on the upper to middle delta. Therefore, the river water level rose by a few meters from 1984 to 1996. The frequent distributary channel migration, which switched the radial channel pattern into the SE-directed pattern in the mid-1980s, was linked with mouth bar formation. Marine conditions also constrain seaward bar progradation. Furthermore, the history of river mouth bar formation reflects human impacts, such as dredging and dyking in order to stabilize the coastal area. 相似文献
4.
Richard L. Reynolds Jessica S. Mordecai Joseph G. Rosenbaum Michael E. Ketterer Megan K. Walsh Katrina A. Moser 《Journal of Paleolimnology》2010,44(1):161-175
Sediments in Marshall and Hidden Lakes in the Uinta Mountains of northeastern Utah contain records of atmospheric mineral-dust
deposition as revealed by differences in mineralogy and geochemistry of lake sediments relative to Precambrian clastic rocks
in the watersheds. In cores spanning more than a thousand years, the largest changes in composition occurred within the past
approximately 140 years. Many elements associated with ore deposits (Ag, As, Bi, Cd, Cu, In, Mo, Pb, S, Sb, Sn, and Te) increase
in the lake sediments above depths that correspond to about AD 1870. Sources of these metals from mining districts to the
west of the Uinta Mountains are suggested by (1) the absence of mining and smelting of these metals in the Uinta Mountains,
and (2) lower concentrations of most of these elements in post-settlement sediments of Hidden Lake than in those of Marshall
Lake, which is closer to areas of mining and the densely urbanized part of north-central Utah that is termed the Wasatch Front,
and (3) correspondence of Pb isotopic compositions in the sediments with isotopic composition of ores likely to have been
smelted in the Wasatch Front. A major source of Cu in lake sediments may have been the Bingham Canyon open-pit mine 110 km
west of Marshall Lake. Numerous other sources of metals beyond the Wasatch Front are likely, on the basis of the widespread
increases of industrial activities in western United States since about AD 1900. In sediment deposited since ca. AD 1945,
as estimated using 239+240Pu activities, increases in concentrations of Mn, Fe, S, and some other redox-sensitive metals may result partly from diagenesis
related to changes in redox. However, our results indicate that these elemental increases are also related to atmospheric
inputs on the basis of their large increases that are nearly coincident with abrupt increases in silt-sized, titanium-bearing
detrital magnetite. Such magnetite is interpreted as a component of atmospheric dust, because it is absent in catchment bedrock.
Enrichment of P in sediments deposited after ca. AD 1950 appears to be caused largely by atmospheric inputs, perhaps from
agricultural fertilizer along with magnetite-bearing soil. 相似文献
5.
Geomorphic effects of floods are a function of several controlling factors, such as magnitude, frequency, rate of sediment movement, flood power, duration of effective flows, sequence of events and the channel geometry. In this paper, these measures of effectiveness have been evaluated for the monsoon-dominated, flood-controlled and incised Tapi River, India by defining four flow categories: low flows, moderate flows, floods and large floods. Ratios between effectiveness parameters of moderate flows on one hand and the floods, large floods and maximum floods on the other, were computed to understand the relative importance of moderate and large flows. In addition to this, stream-power graphs for large floods were constructed, and the changes in channel form were analyzed by using multi-date cross-sections. The results of the study indicate that the morphological characteristics of the bedrock as well as the alluvial channels of the monsoonal and incised Tapi River are maintained by large-magnitude, but low frequency floods that occur at long intervals. Because the channel is incised the effectiveness of large flows is accentuated. The incised channel form enhances the role of large floods by reducing the width–depth ratio, and by increasing the velocity as well as the energy per unit area. The low and moderate flows are superior to high-magnitude flows, only in terms of suspended sediment transport and frequency of occurrence. Another conclusion is that the suspended sediment carried by flows may not be the most appropriate criterion for measuring the geomorphic effectiveness of flows, particularly for monsoonal rivers. 相似文献
6.
Complex channel responses to changes in stream flow and sediment supply on the lower Duchesne River, Utah 总被引:1,自引:2,他引:1
Channel responses to flow depletions in the lower Duchesne River over the past 100 years have been highly complex and variable in space and time. In general, sand-bed reaches adjusted to all perturbations with bed-level changes, whereas the gravel-bed reaches adjusted primarily through width changes. Gravel-bed reaches aggraded only when gravel was supplied to the channel through local bank erosion and degraded only during extreme flood events.A 50% reduction in stream flow and an increase in fine sediment supply to the study area occurred in the first third of the 20th century. The gravel-bed reach responded primarily with channel narrowing, whereas bed aggradation and four large-scale avulsions occurred in the sand-bed reaches. These avulsions almost completely replaced a section of sinuous channel about 14 km long with a straighter section about 7 km long. The most upstream avulsion, located near a break in valley slope and the transition from a gravel bed upstream and a sand bed downstream, transformed a sinuous sand-bed reach into a braided gravel-bed reach and eventually into a meandering gravel-bed reach over a 30-year period. Later, an increase in flood magnitudes and durations caused widening and secondary bed aggradation in the gravel-bed reaches, whereas the sand-bed reaches incised and narrowed. Water diversions since the 1950s have progressively eliminated moderate flood events, whereas larger floods have been less affected. The loss of frequent flooding has increased the duration and severity of drought periods during which riparian vegetation can establish along the channel margins. As a result, the channel has gradually narrowed throughout the study area since the late 1960s, despite the occasional occurrence of large floods. No tributaries enter the Duchesne River within the study area, so all reaches have experienced identical changes in stream flow and upstream sediment supply. 相似文献
7.
The River Ganga in the central Gangetic plain shows the incision of 20 m of Late Quaternary sediments that form a vast upland terrace (T2). The incised Ganga River Valley shows two terraces, namely the river valley (terrace-T1) and the present-day flood plain (terrace-T0). Terrace-T1 shows the presence of meander scars, oxbow lakes, scroll plains, which suggests that a meandering river system prevailed in the past. The present-day river channel flows on terrace-T0 and is braided, sensu stricto. It is thus inferred that the River Ganga experienced at least two phases of tectonic adjustments: (1) incision and (2) channel metamorphosis from meandering to braided.Optical dating of samples from three different terraces has bracketed the phase of incision to be <6 and 4 ka. Different ages of the top of terrace-T2 show that this surface experienced differential erosion due to tectonic upwarping in the region, which also caused the river incision. River metamorphosis occurred some time during 4 and 0.5 ka. 相似文献
8.
This study examined vertical, lateral, and downstream variations in the grain-size characteristics of historical (post-1830) overbank deposits in a watershed that has experienced high rates of accelerated flood plain sedimentation. More than 800 samples were collected from 53 cores along nine flood plain transects. Overbank deposits exhibit a coarsening-upward sequence attributed to historical changes in the sand content of source materials. The erosion of loess-capped soils increased the exposure, erosion, and transport of sandy parent materials. The average sand content of near-channel cores increases moderately downstream along two of the reaches because sandy source materials are increasingly exposed in larger main valleys in the northern part of the watershed. The two northernmost reaches are coarser overall, but do not display significant downstream trends. The sand content of surface and early historical overbank deposits generally decreases laterally as an exponential function of distance from the channel, suggesting transport by turbulent diffusion. The presence of sand throughout the transects and lateral coarsening at two of the transects, however, suggests that sediment transport by convection is also important. 相似文献
9.
This study examines how the impact of impervious surface in the Templeton Gap watershed (Colorado) could be reduced through the use of low-impact development (LID) strategies. LID is a sustainable stormwater approach to land management that retains runoff close to the source by preserving natural landscape features and limiting imperviousness. Our research indicates that LID techniques could reduce peak flows generated by stormwater runoff, allow city engineers to restore the stream channel to a more natural state, and improve the safety of residents and the security of property below the levee. This study developed a model of the Templeton Gap watershed and its associated stormwater infrastructure using the Stormwater Management Model (SWMM) developed by the U.S. Environmental Protection Agency (EPA). Specifically designed for small urban watersheds, SWMM allows users to accurately represent stormwater runoff dynamics and project the impact of hypothetical LID features such as porous pavement, rain gardens, and infiltration trenches on runoff and streamflow. 相似文献
10.
While studies on gravel mantled and mixed alluvial bedrock rivers have increased in recent decades, few field studies have focused on spatial distributions of bedrock and alluvial reaches and differences between reach types. The objective of this work is to identify the spatial distribution of alluvial and bedrock reaches in the Upper Guadalupe River. We compare reach length, channel and floodplain width, sinuosity, bar length and spacing, bar surface grain size, and slope in alluvial and bedrock reaches to identify whether major differences exist between channel reach types. We find that local disturbances, interaction of the channel and valley sides, variation in lithology, and regional structural control contribute to the distribution of bedrock reaches in the largely alluvial channel. Alluvial and bedrock channel reaches in the Upper Guadalupe River are similar, particularly with respect to the distribution of gravel bars, surface grain size distributions of bars, and channel slope and width. Our observations suggest that the fluvial system has adjusted to changes in base level associated with the Balcones Escarpment Fault Zone by phased incision into alluvial sediment and the underlying bedrock, essentially shifting from a fully alluvial river to a mixed alluvial bedrock river. 相似文献
11.
Woonsup Choi Hi-Ryong Byun Claudio Cassardo Jinmu Choi 《The Professional geographer》2018,70(3):463-475
This study examined meteorological and streamflow droughts for the period from 1951 to 2006 using the Milwaukee River basin in Wisconsin as the study area in an effort to improve the understanding of drought propagation. Specifically, this study aimed to answer the following research questions: (1) What are the temporal trends of meteorological and streamflow droughts identified by drought indicators? (2) How do the drought indicators manifest drought propagation? Meteorological droughts were identified using the Effective Drought Index (EDI), and streamflow droughts were identified using a threshold-level approach. The intensity and duration of both types of drought were found to have decreased over time, most likely due to increasing precipitation. Therefore, in the study area, and likely in the larger region, drought has become of less concern. The propagation of meteorological drought into streamflow drought was detected generally after moderate and severe sequences of negative EDI that eventually led to extreme meteorological drought events. The study finds that both EDI and the threshold-level approach are effective in diagnosing meteorological and streamflow drought events of all durations. 相似文献
12.
Hydrological processes of glacier and snow melting and runoff in the Urumqi River source region,eastern Tianshan Mountains,China 总被引:1,自引:0,他引:1
Hydrological processes were compared, with and without the influence of precipitation on discharge, to identify the differences between glacierized and non-glacierized catchments in the Urumqi River source region, on the northern slope of the eastern Tianshan Mountains, during the melting season (May-September) in 2011. The study was based on hydrological data observed at 10-min intervals, meteorological data observed at 15-min intervals, and glacier melting and snow observations from the Empty Cirque, Zongkong, and Urumqi Glacier No.1 gauging stations. The results indicated that the discharge differed markedly among the three gauging stations. The daily discharge was more than the nightly discharge at the Glacier No.1 gauging station, which contrasted with the patterns observed at the Zongkong and Empty Cirque gauging stations. There was a clear daily variation in the discharge at the three gauging stations, with differences in the magnitude and duration of the peak discharge. When precipitation was not considered, the time-lags between the maximum discharge and the highest temperature were 1-3 h, 10-16 h, and 5-11 h at the Glacier No.1, Empty Cirque, and Zongkong gauging stations, respectively. When precipitation was taken into consideration, the corresponding time-lags were 0-1 h, 13 h, and 6-7 h, respectively. Therefore, the duration from the generation of discharge to confluence was the shortest in the glacierized catchment and the longest in the catchment where was mainly covered by snow. It was also shown that the hydrological process from the generation of discharge to confluence shortened when precipitation was considered. The factors influencing changes in the discharge among the three gauging stations were different. For Glacier No.1 station, the discharge was mainly controlled by heat conditions in the glacierized region, and the discharge displayed an accelerated growth when the temperature exceeded 5°C in the melt season. It was found that the englacial and subglacial drainage channel of Glacier No.1 had become simpler during the past 20 years. Its weaker retardance and storage of glacier melting water resulted in rapid discharge confluence. It was also shown that the discharge curve and the time-lag between the maximum discharge and the highest temperature could be used to reveal the evolution of the drainage system and the process of glacier and snow melting at different levels of glacier coverage. 相似文献
13.
OSL dating of glacier extent during the Last Glacial and the Kanas Lake basin formation in Kanas River valley, Altai Mountains, China 总被引:2,自引:0,他引:2
Xiangke Xu Jianqiang Yang Guocheng Dong Liqiang Wang Lee Miller 《Geomorphology》2009,112(3-4):306-317
The Kanas River originates on the southern slope of Youyi Peak, the largest center of modern glaciers in Altai Mountains, China. Three sets of moraines and associated glacial sediments are well preserved near the Kanas Lake outlet, recording a complex history and landscape evolution during the Last Glacial. Dating the moraines allows the temporal and spatial glacier shift and climate during the Last Glacial to be determined, and then constrains when and how the Kanas Lake basin was formed. Dating of the glacial tills was undertaken by utilizing the optically stimulated luminescence (OSL) method. Results date four samples from the three sets of moraines to 28.0, 34.4, 38.1, and 49.9 ka and one sample from outwash sediment to 6.8 ka. The Kanas Lake basin is a downfaulted basin and was eroded by glacier before 28.0 ka, and the glacial moraines blocked the glacier-melt water after the glacier retreat, which made the present-day Kanas Lake eventually form at least before 6.8 ka BP. In Altai Mountains, the glacier advance was more extensive in Marine Isotope Stage (MIS) 3 than MIS 2, probably because the mid-latitude westerlies shifted northward and/or intensified during the MIS 3, resulting in a more positive glacier mass balance. Nevertheless, the Siberian High dominated the Altai Mountains in MIS 2, resulting in a relative decrease in precipitation. 相似文献
14.
The Nysa K
odzka river drainage basin in the Sudeten Mts., SW Poland, preserves a complex late Cainozoic succession that includes eight fluvial series or terraces and deposits from two glacial episodes as well as local volcanic rocks, slope deposits and loess. Fluvial sedimentation took place during the Late Pliocene and from the early Middle Pleistocene (Cromerian), with a long erosion phase (gap) during the Early Pleistocene. Fluvial series are dated to the Late Pliocene, Cromerian, Holsteinian, late Saalian/Eemian, Weichselian, and the Holocene. Glacial deposits represent the early Elsterian and early Saalian stages. Almost all these stratigraphic units have been observed in all geomorphic zones of the river: the mountainous K
odzko Basin, the Bardo Mts. (Bardo gorge) and in the mountain foreland. The main phase of tectonic uplift and strong erosion was during the Early Pleistocene. Minor uplift is documented also during the post-early Saalian and probably the post-Elsterian. The post-early Saalian and post-Elstrian uplift phases are probably due to glacio-isostatic rebound. The Quaternary terrace sequence was formed due to base-level changes, epigenetic erosion after glaciations and neotectonic movements. The Cromerian fluvial deposits/terraces do not indicate tectonic influence at all. All other Quaternary terraces indicate clear divergence, and the post-early Saalian terraces also show fault scarps. The fluvial pattern remained stable, once formed during the Pliocene, with only minor changes along the uplifted block along the Bardo gorge, inferring an antecedent origin for the Bardo gorge. Only during the post-glacial times, have epigenetic incisions slightly modified the valley. 相似文献
15.
祁连山疏勒河源区冻土退化对土壤微生物生物量碳氮的影响 总被引:1,自引:1,他引:1
对青藏高原东北缘祁连山西段疏勒河源区多年冻土区0~50 cm土壤微生物生物量碳氮分布特征及其影响因素进行分析。结果表明:稳定型和极不稳定型多年冻土区0~50 cm土壤中微生物量碳含量范围分别为0.015~0.620 g/kg和0.019~0.411 g/kg,微生物量氮含量范围分别为0.644~12.770 mg/kg和0.207~3.725 mg/kg;土壤微生物量总体呈现出稳定型显著高于极不稳定型多年冻土,表明多年冻土退化(多年冻土由稳定型退化为极不稳定型)对土壤微生物量积累有明显抑制作用。土壤微生物生物量碳占有机碳、微生物生物量氮占全氮的比值在稳定型多年冻土中显著高于极不稳定型,表明多年冻土退化对土壤微生物的矿化能力有明显抑制作用。土壤微生物量及其与土壤养分的比值有显著的剖面变化特征,随土壤深度增加而减小。土壤微生物量碳氮均与土壤温度显著负相关,与地下生物量显著正相关。稳定型多年冻土中,土壤微生物量碳氮与碳氮比正相关、与氧化还原电位负相关;不稳定型多年冻土中,土壤微生物量碳氮与pH正相关。土壤微生物量碳氮与土壤温度和pH在剖面变化上显著相关。逐步回归分析表明驱动微生物生物量碳氮在不同多年冻土类型和土层之间变化的因子是不同的。 相似文献
16.
太行山区牛叫河小流域土地可持续利用模式探讨 总被引:4,自引:0,他引:4
太行山区小流域综合开发治理是促进山区生态建设和保障山前平原城市密集带发展的重大课题。科学划分小流域土地利用功能区,进而形成合理的土地利用模式是推进太行山区小流域开发治理的关键举措。本文以位于太行山东坡的牛叫河小流域为例,界定了生态功能区划的基本程序,建立了包括恒定和波动两类指标的区划指标体系,提出了以模糊聚类为主体的区划方法。将牛叫河小流域划分为分水岭区、沟坡区和沟道区三种土地利用功能类型,相应的土地利用模式为:分水岭区地形平缓,通过改良土壤,可开展农作物种植,统筹安排农林牧业生产;沟坡区地形坡度较大、土地贫瘠,水土流失严重,宜以林为主,并需采取综合保持性措施;沟道区土地平坦,应突破单纯的种植业模式,以获得更高的经济和社会效益。 相似文献
17.
Morphological analysis of the Fortore River coastal plain and the Lesina Lake coastal barrier integrated with radiocarbon age data indicates that the evolution of the coastal landscape has been strongly affected by a number of strong earthquakes and related tsunamis which occurred during the last 3000 years. The first seismic event struck this coastal area in the V century BC. It produced strong erosion of the Fortore River coastal plain and significant emersion of Punta delle Pietre Nere, as well as the large tsunami responsible for the development of the Sant'Andrea washover fan. The second event occurred in 493 AD; it induced severe erosion of the Fortore River coastal plain and triggered the large tsunami that hit the Lesina Lake coastal barrier, producing the Foce Cauto washover fan. Then later in 1627, an earthquake was responsible for the further coseismic uplift of Punta delle Pietre Nere, the subsidence of Lesina village area and the development of a tsunami which produced two washover fans.Morphological analysis points out that seismic events strong enough to control the morphological evolution of local coastal landscapes show a statistical return period of about 1000 years. These major events produced important coseismic vertical movements and large tsunamis. However, the correct identification of the tectonic structure responsible for the generation of these strong earthquakes is still an unsolved problem. 相似文献
18.
干旱区大尺度土壤盐度信息环境建模——以新疆天山南北中低海拔冲积平原为例 总被引:4,自引:0,他引:4
区域空间信息有助于决策者针对特定潜在和既定的土壤盐渍化区域制定改良和优化政策,以避免灌区水土资源的不合理配置和干旱区土地生态系统持续性退化。然而现存区域尺度土壤盐度数据以矢量方式留存,多边形内部土壤属性无空间变异性,缺乏实时更新,对当下实际指导作用具有一定的局限性。随着人类活动的加剧,土壤及其结构性退化正加速危害土壤质量和健康。对此,急需更新或升级,用于刻画干旱区生态系统中土壤盐度数据,以辅助制定相关政策,减缓土壤盐渍化的危害。针对此问题,本文基于代表性等级的采样设计方法(Integrative Hierarchical Sampling Strategy, IHSS),获取少量典型样点,结合土壤—环境推理模型(soil land inference model, SoLIM),尝试推理区域尺度土壤盐分含量信息。研究以新疆天山南北中低海拔冲积平原为案例,仅以23个代表性样本,推理陆表(0~10 cm)土壤盐分含量,源自3个典型绿洲94个野外样本的验证数据显示,依据评判标准,预测结果与实际情况较为相符,与线性回归模型相比,具备处理土壤与环境变量之间非线性关系的SoLIM,推理精度更高。所以,研究认为模糊隶属度加权平均的方法(IHSS-SoLIM)可以通过较小的建模点得到更好的预测效果,可作为区域尺度土壤盐度推理的备选方案。 相似文献
19.
基于土地利用/覆被变化表征的现代绿洲演变过程——以天山北坡三工河流域为例 总被引:5,自引:0,他引:5
本文以天山北坡三工河流域为例,利用1958年、1968年和1978年3期航片、1987年彩红外航片、1998年Landsat TM、2004年SPOT 5和2014年Landsat OLI影像,构建绿洲及其外围荒漠7期土地利用/土地覆被数据集,综合分析1950s屯垦戍边以来现代绿洲演变和外围荒漠植物群落变化。结果表明:①1950年以来,屯垦戍边使位于三工河冲洪积扇中下部的老绿洲不断向冲积平原扩张,老绿洲外围以柽柳和梭梭为建群种的土质荒漠景观不断转变为新绿洲,绿洲面积增加了4倍多。其中1958-1968年和2000s以来是绿洲变化最为显著的两个阶段,这两个阶段分别对应了农业用地和建设用地增幅最大的时期。② 三工河流域的现代绿洲演变过程中存在“地方管辖区”和“兵团农场区”两种基本管理模式,也正是这两种模式相互渗透、相互交叉融合,共同推动了现代绿洲演变。③三工河流域1950s-2004年现代绿洲演变具有干旱区绿洲演变的普遍特征,但2004年以后的演变仅适用于有较大规模跨流域调水或新增水源的绿洲演变情形。现代绿洲的扩张以荒漠植被的砍伐和破坏为代价,导致绿洲外围植物群落结构发生了显著的变化,这使得绿洲外围荒漠生态系统的保护愈加困难 相似文献
20.
The Rio Negro has responded significantly in the Late Pleistocene and Holocene to lagged environmental changes largely associated with activity during the last glacial in the Amazon basin. On the basis of geological structure, the Rio Negro can be divided into six distinct reaches that each reflects very marked differential processes and geomorphological styles. No deposits of the Upper Pleniglacial were recognized in the field. The oldest recognizable Late Pleistocene alluvial unit is the Upper Terrace of Middle Pleniglacial age (ca. 65–25 ka) (reach I), tentatively correlated with the oldest terrace identified on the left bank of reach III. At that time, the river was mainly an aggradational bed load system carrying abundant quartz sand, a product of more seasonal conditions in the upper catchment. The late glacial (14–10 ka) is represented by a lower finer-grained terrace along the upper basin (reach I), which was recognized in the Tiquié, Curicuriarí, and Vaupes rivers. At that time, the river carried abundant suspended load as a response to climatic changes associated with deglaciation.Since about 14 ka, the river has behaved as a progradational system, infilling in downstream series a sequence of structurally controlled sedimentary basins or ‘compartments,’ creating alluvial floodplains and associated anabranching channel systems. Reach II was the first to be filled, then reach III, both accumulating mainly sand. Fine deposits increase downstream in reach III and become predominant in some anabranch islands of the distal reach. The lowermost reaches of the Negro (V and VI) have been greatly affected by a rising base level and associated backwater effect from aggradation of the Amazon during late glacial and recent times. Reach V has acted almost entirely as a fine sediment trap. The remarkable Anavilhanas archipelago is the product of Holocene deposition in the upper part of this sedimentary basin; however, suspended sediment load declined about 1.5 ka, prior to the lower part of this basin becoming infilled.The progradational behavior of the Rio Negro, filling tectonic basins as successive sediment traps with sand in the upper basins and fines in the downstream ones, illustrates how a large river system responses to profound changes in Late Quaternary base level and sediment supply. The most stable equilibrium conditions have been achieved in the Holocene in reaches IIb and IIIa, where an anabranching channel and erosional–relictual island system relatively efficiently convey water and sediment downstream. Reaches IIIb and V never achieved equilibrium conditions during the Holocene, characterised as they are today with incomplete floodplains and open water. 相似文献