首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
We describe an smooth particle hydrodynamics (SPH) model for chemical enrichment and radiative cooling in cosmological simulations of structure formation. This model includes: (i) the delayed gas restitution from stars by means of a probabilistic approach designed to reduce the statistical noise and, hence, to allow for the study of the inner chemical structure of objects with moderately high numbers of particles; (ii) the full dependence of metal production on the detailed chemical composition of stellar particles by using, for the first time in SPH codes, the   Q ij   matrix formalism that relates each nucleosynthetic product to its sources and (iii) the full dependence of radiative cooling on the detailed chemical composition of gas particles, achieved through a fast algorithm using a new metallicity parameter ζ( T ) that gives the weight of each element on the total cooling function. The resolution effects and the results obtained from this SPH chemical model have been tested by comparing its predictions in different problems with known theoretical solutions. We also present some preliminary results on the chemical properties of elliptical galaxies found in self-consistent cosmological simulations. Such simulations show that the above ζ-cooling method is important to prevent an overestimation of the metallicity-dependent cooling rate, whereas the   Q ij   formalism is important to prevent a significant underestimation of the [α/Fe] ratio in simulated galaxy-like objects.  相似文献   

2.
3.
4.
5.
We have undertaken numerical simulations of galaxy interactions and mergers, coupling the dynamics with the star formation history and the chemical evolution. The self-gravity of stars and gas is taken into account through a tree-code algorithm, the gas hydrodynamics through SPH, and an empirical law such as a local Schmidt law is used to compute star formation. The gas and stellar metallicity is computed at each position, according to assumed yields, and the dust amount is monitored. At each step the spectra of galaxies are computed, according to simple radiative transfer and dust models. Initial conditions for these simulations will be taken from a large-scale cosmological frame-work. The aim is to build a statistically significant library of merger histories. The first results of the project will be discussed, in particular on predictions about galaxy surveys at high redshift. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

6.
7.
We argue for implementing star formation on a viscous time-scale in hydrodynamical simulations of disc galaxy formation and evolution. Modelling two-dimensional isolated disc galaxies with the Bhatnagar–Gross–Krook (BGK) hydrocode, we verify the analytic claim of various authors that if the characteristic time-scale for star formation is equal to the viscous time-scale in discs, the resulting stellar profile is exponential on several scalelengths whatever the initial gas and dark matter profile. This casts new light on both numerical and semi-analytical disc formation simulations that either (a) commence star formation in an already exponential gaseous disc, (b) begin a disc simulation with conditions known to lead to an exponential, i.e. the collapse of a spherically symmetric nearly uniform sphere of gas in solid-body rotation under the assumption of specific angular momentum conservation, or (c) in simulations performed in a hierarchical context, tune their feedback processes to delay disc formation until the dark matter haloes are slowly evolving and without much substructure so that the gas has the chance to collapse under conditions known to give exponentials. In such models, star formation follows a Schmidt-like law, which for lack of a suitable time-scale, resorts to an efficiency parameter. With star formation prescribed on a viscous time-scale, however, we find gas and star fractions after ∼12 Gyr that are consistent with observations without having to invoke a 'fudge factor' for star formation. Our results strongly suggest that despite our gap in understanding the exact link between star formation and viscosity, the viscous time-scale is indeed the natural time-scale for star formation.  相似文献   

8.
We describe a new implementation of a parallel TreeSPH code with the aim of simulating galaxy formation and evolution. The code has been parallelized using shmem , a Cray proprietary library to handle communications between the 256 processors of the Silicon Graphics T3E massively parallel supercomputer hosted by the Cineca Super-computing Center (Bologna, Italy). 1
The code combines the smoothed particle hydrodynamics (SPH) method for solving hydrodynamical equations with the popular Barnes & Hut tree-code to perform gravity calculation with an N ×log  N scaling, and it is based on the scalar TreeSPH code developed by Carraro et al. Parallelization is achieved by distributing particles along processors according to a workload criterion.
Benchmarks, in terms of load balance and scalability, of the code are analysed and critically discussed against the adiabatic collapse of an isothermal gas sphere test using 2×104 particles on 8 processors. The code results balance at more than the 95 per cent level. Increasing the number of processors, the load balance slightly worsens. The deviation from perfect scalability for increasing number of processors is almost negligible up to 32 processors. Finally, we present a simulation of the formation of an X-ray galaxy cluster in a flat cold dark matter cosmology, using 2×105 particles and 32 processors, and compare our results with Evrard's P3M–SPH simulations.
Additionally we have incorporated radiative cooling, star formation, feedback from SNe of types II and Ia, stellar winds and UV flux from massive stars, and an algorithm to follow the chemical enrichment of the interstellar medium. Simulations with some of these ingredients are also presented.  相似文献   

9.
We summarize the results of numerical simulations of colliding gas-rich disk galaxies in which the impact velocity is set parallel to the spin axes of the two galaxies. The effects of varying the impact speed are studied with particular attention to the resulting gaseous structures and shockwave patterns, and the time needed to produce these structures. The simulations employ an N-body treatment of the stars and dark matter, together with an SPH treatment of the gas, in which all components of the models are gravitationally active. The results indicate that for such impact geometries, collisions can lead to the very rapid formation of a central, rapidly rotating, dense gas disk, and that in all cases extensive star formation is predicted by the very high gas densities and prevalence of shocks, both in the nucleus and out in the galactic disks. As the dense nucleus is forming, gas and stars are dispersed over very large volumes, and only fall back towards the nucleus over long times. In the case of low impact velocities, this takes an order of magnitude more time than that needed for the formation of a dense nucleus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

11.
We investigate the correlation of star formation quenching with internal galaxy properties and large-scale environment (halo mass) in empirical data and theoretical models. We make use of the halo-based group catalogue of Yang and collaborators, which is based on the Sloan Digital Sky Survey. Data from the Galaxy evolution explorer are also used to extract the recent star formation rate. In order to investigate the environmental effects, we examine the properties of 'central' and 'satellite' galaxies separately. For central galaxies, we are unable to conclude whether star formation quenching is primarily connected with halo mass or stellar mass, because these two quantities are themselves strongly correlated. For satellite galaxies, a nearly equally strong dependence on halo mass and stellar mass is seen. We make the same comparison for five different semi-analytic models based on three independently developed codes. We find that the models with active galactic nuclei feedback reproduce reasonably well the dependence of the fraction of central red and passive galaxies on halo mass and stellar mass. However, for satellite galaxies, the same models badly overproduce the fraction of red/passive galaxies and do not reproduce the empirical trends with stellar mass or halo mass. This satellite overquenching problem is caused by the too-rapid stripping of the satellites' hot gas haloes, which leads to rapid strangulation of star formation.  相似文献   

12.
13.
We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger-driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disc galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local universe. We find that the merger-driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger-driven star formation and test that it is insensitive to uncertainties in the feedback parametrization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disc and suppresses merger-driven star formation for large mass ratio mergers. Direct, coplanar merging orbits produce the largest tidal disturbance and yield the most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of smoothed particle hydrodynamics employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.  相似文献   

14.
We calculate chemical evolution models for four dwarf spheroidal (dSph) satellites of the Milky Way (Carina, Ursa Minor, Leo I and Leo II) for which reliable non-parametric star formation histories have been derived. In this way, the independently-obtained star formation histories are used to constrain the evolution of the systems we are treating. This allows us to obtain robust inferences on the history of such crucial parameters of galactic evolution as gas infall, gas outflows and global metallicities for these systems. We can then trace the metallicity and abundance ratios of the stars formed, the gas present at any time within the systems and the details of gas ejection, of relevance to enrichment of the galaxies environment. We find that galaxies showing one single burst of star formation (Ursa Minor and Leo II) require a dark halo slightly larger that the current estimates for their tidal radii, or the presence of a metal-rich selective wind that might carry away much of the energy output of their supernovae before this might have interacted and heated the gas content, for the gas to be retained until the observed stellar populations have formed. Systems showing extended star formation histories (Carina and Leo I), however, are consistent with the idea that their tidally-limited dark haloes provide the necessary gravitational potential wells to retain their gas. The complex time structure of the star formation in these systems remains difficult to understand. Observations of detailed abundance ratios for Ursa Minor strongly suggest that the star formation history of this galaxy might in fact resemble the complex picture presented by Carina or Leo I, but localized at a very early epoch.  相似文献   

15.
We construct a simple, robust model of the chemical evolution of galaxies from high to low redshift, and apply it to published observations of damped Lyman α quasar absorption line systems (DLAs). The elementary model assumes quiescent star formation and isolated galaxies (no interactions, mergers or gas flows). We consider the influence of dust and chemical gradients in the galaxies, and hence explore the selection effects in quasar surveys. We fit individual DLA systems to predict some observable properties of the absorbing galaxies, and also indicate the expected redshift behaviour of chemical element ratios involving nucleosynthetic time delays.
Despite its simplicity, our 'monolithic collapse' model gives a good account of the distribution and evolution of the metallicity and column density of DLAs, and of the evolution of the global star formation rate and gas density below redshifts z ∼3. However, from the comparison of DLA observations with our model, it is clear that star formation rates at higher redshifts ( z >3) are enhanced. Galaxy interactions and mergers, and gas flows very probably play a major role.  相似文献   

16.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

17.
galev (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star formation shortly after the big bang until today.
For galaxies, galev includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for what we call a chemically consistent treatment: we use input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations.
Here we present the latest version of the galev evolutionary synthesis models that are now interactively available at http://www.galev.org . We review the currently used input physics, and also give details on how this physics is implemented in practice. We explain how to use the interactive web interface to generate models for user-defined parameters and also give a range of applications that can be studied using galev , ranging from star clusters, undisturbed galaxies of various types E–Sd to starburst and dwarf galaxies, both in the local and the high-redshift Universe.  相似文献   

18.
We present results from a careful and detailed analysis of the structural and dynamical properties of a sample of 29 disc-like objects identified at z =0 in three AP3M–SPH fully consistent cosmological simulations. These simulations are realizations of a CDM hierarchical model, in which an inefficient Schmidt-law-like algorithm to model the stellar formation process has been implemented. We focus on properties that can be constrained with available data from observations of spiral galaxies, namely the bulge and disc structural parameters and the rotation curves. Comparison with data from Broeils, de Jong and Courteau gives satisfactory agreement, in contrast with previous findings using other codes. This suggests that the stellar formation implementation we have used has succeeded in forming compact bulges that stabilize disc-like structures in the violent phases of their assembly, while in the quiescent phases the gas has cooled and collapsed in accord with the Fall & Efstathiou standard model of disc formation.  相似文献   

19.
We study the star formation history of normal spirals by using a large and homogeneous data sample of local galaxies. For our analysis we utilize detailed models of chemical and spectrophotometric galactic evolution, calibrated on the Milky Way disc. We find that star formation efficiency is independent of galactic mass, while massive discs have, on average, lower gas fractions and are redder than their low-mass counterparts; put together, these findings convincingly suggest that massive spirals are older than low-mass ones. We evaluate the effective ages of the galaxies of our sample and we find that massive spirals must be several Gyr older than low-mass ones. We also show that these galaxies (having rotational velocities in the 80–400 km s−1 range) cannot have suffered extensive mass losses, i.e. they cannot have lost during their lifetime an amount of mass much larger than their current content of gas+stars.  相似文献   

20.
We discuss a heuristic model to implement star formation and feedback in hydrodynamical simulations of galaxy formation and evolution. In this model, gas is allowed to cool radiatively and to form stars at a rate given by a simple Schmidt-type law. We assume that supernova feedback results in turbulent motions of gas below resolved scales, a process that can pressurize the diffuse gaseous medium effectively, even if it lacks substantial thermal support. Ignoring the complicated detailed physics of the feedback processes, we try to describe their net effect on the interstellar medium with a fiducial second reservoir of internal energy, which accounts for the kinetic energy content of the gas on unresolved scales. Applying the model to three-dimensional, fully self-consistent models of isolated disc galaxies, we show that the resulting feedback loop can be modelled with smoothed particle hydrodynamics such that converged results can be reached with moderate numerical resolution. With an appropriate choice of the free parameters, Kennicutt's phenomenological star formation law can be reproduced over many orders of magnitude in gas surface density. We also apply the model to mergers of equal-mass disc galaxies, typically resulting in strong nuclear starbursts. Confirming previous findings, the presence of a bulge can delay the onset of the starburst from the first encounter of the galaxies until their final coalescence. The final density profiles of the merger remnants are consistent with de Vaucouleurs profiles, except for the innermost region, where the newly created stars give rise to a luminous core with stellar densities that may be in excess of those observed in the cores of most elliptical galaxies. By comparing the isophotal shapes of collisionless and dissipative merger simulations we show that dissipation leads to isophotes that are more discy than those of corresponding collisionless simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号