首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sixteenth eruption of Hekla since 1104 began on August 17th, 1980, after the shortest repose period on record, only ten years. The eruption started with a plinian phase and simultaneously lava issued at high rate from a fissure that runs along the Hekla volcanic ridge. The production rate declined rapidly after the first day and the eruption stopped on August 20th. A total of 120 million m3 of lava and about 60 million m3 of airborne tephra were produced during this phase of the activity. In the following seven months steam emissions were observed on the volcano. Activity was renewed on April 9th 1981, and during the following week additional 30 million m3 of lava flowed from a summit crater and crater rows on the north slope. The lavas and tephra are of uniform intermediate chemical composition similar to that of earlier Hekla lavas. Although the repose time was short the eruptions fit well into the behaviour pattern of earlier eruptions. Distance changes in a geodimeter network established after the eruptions are interpreted as due to inflation of magma reservoirs at 7–8 kilometers depth.  相似文献   

2.
Sierra Negra volcano began erupting on 22 October 2005, after a repose of 26 years. A plume of ash and steam more than 13 km high accompanied the initial phase of the eruption and was quickly followed by a ~2-km-long curtain of lava fountains. The eruptive fissure opened inside the north rim of the caldera, on the opposite side of the caldera from an active fault system that experienced an mb 4.6 earthquake and ~84 cm of uplift on 16 April 2005. The main products of the eruption were an `a`a flow that ponded in the caldera and clastigenic lavas that flowed down the north flank. The `a`a flow grew in an unusual way. Once it had established most of its aerial extent, the interior of the flow was fed via a perched lava pond, causing inflation of the `a`a. This pressurized fluid interior then fed pahoehoe breakouts along the margins of the flow, many of which were subsequently overridden by `a`a, as the crust slowly spread from the center of the pond and tumbled over the pahoehoe. The curtain of lava fountains coalesced with time, and by day 4, only one vent was erupting. The effusion rate slowed from day 7 until the eruption’s end two days later on 30 October. Although the caldera floor had inflated by ~5 m since 1992, and the rate of inflation had accelerated since 2003, there was no transient deformation in the hours or days before the eruption. During the 8 days of the eruption, GPS and InSAR data show that the caldera floor deflated ~5 m, and the volcano contracted horizontally ~6 m. The total eruptive volume is estimated as being ~150×106 m3. The opening-phase tephra is more evolved than the eruptive products that followed. The compositional variation of tephra and lava sampled over the course of the eruption is attributed to eruption from a zoned sill that lies 2.1 km beneath the caldera floor.  相似文献   

3.
A study of the historic record of activity of Piton de la Fournaise has revealed a cyclic pattern of eruption involving effusion of oceanite lava from major-flank centers every 20–40 years. Calculated volumes of the recent lava flows and pyroclastic ejecta have established an effusion rate of 3.9 m3 s−1 since 1931 and 6.2 m3 s−1 since 1951. Flank eruptions outside the present caldera define a distribution maximum which is expected to correlate with the depth range of a high-level magma reservoir.A model has been constructed which requires replenishment of a high-level magma chamber at a constant rate and regular eruption from summit and minor-flank centers, acting as “safety valves” to the magma chamber; when the magma chamber reaches its maximum expansion, a major-flank outburst of oceanitic lava occurs.The fact that calculated effusion rates are not consistent with radiometric dates implies an increase in effusion volume with time for the volcano.  相似文献   

4.
The 18th historic eruption of Hekla started on 26 February, 2000. It was a short-lived but intense event, emitting basaltic andesitic (55.5 wt% SiO2) pyroclastic fragments and lava. During the course of the eruption, monitoring was done by both instruments and direct observations, together providing unique insight into the current activity of Hekla. During the 12-day eruption, a total of 0.189 km3 DRE of magma was emitted. The eruptive fissure split into five segments. The segments at the highest altitude were active during the first hours, while the segments at lower altitude continued throughout the eruption. The eruption started in a highly explosive manner giving rise to a Subplinian eruptive column and consequent basaltic pyroclastic flows fed by column collapses. After the explosive phase reached its maximum, the eruption went through three more phases, namely fire-fountaining, Strombolian bursts and lava effusion. In this paper, we describe the course of events of the eruption of Hekla and the origin of its magma, and then show that the discharge rate can be linked to different style of eruptive activity, which are controlled by fissure geometry. We also show that the eruption phases observed at Hekla can be linked with inferred magma chamber overpressure prior to the eruption.  相似文献   

5.
The eruptive history of Kuju volcano on Kyushu, Japan, during the past 15,000 years has been determined by tephrochronology and 14C dating. Kuju volcano comprises isolated lava domes and cones of hornblende andesite together with aprons of pyroclastic-flow deposits on its flanks. Kuju volcano produced tephras at roughly 1000-yr intervals during the past 5000 years and 70% of the domes and cones have formed during the past 15,000 years. The youngest magmatic activity of Kuju volcano was the 1.6 km3 andesite eruption about 1600 years ago which emplaced a lava dome and block-and-ash flow. Kuju volcano shows a nearly constant long-term eruption rate (0.7–0.4 km3 for 1000 years) during the past 15,000 years. This rate is within the range of estimated average eruption rates of late Quaternary volcanoes in the Japanese Arc, but is about one order of magnitude higher than the eruption rate of Unzen volcano. Kuju volcano has been in phreatic eruption since October 1995. The late Quaternary history of Kuju indicates that it poses a significant volcanic hazard, primarily due to block-and-ash flows from collapsing lava domes.  相似文献   

6.
Acid rain and ongoing eruptive activity at Rincón de la Vieja volcano in northwestern Costa Rica have created a triangular, deeply eroded “dead zone” west-southwest of the Active Crater. The barren, steep-walled canyons in this area expose one of the best internal stratigraphic profiles of any active or dormant volcano in Costa Rica. Geologic mapping along the southwestern flank of the volcano reveals over 300 m of prehistoric volcanic stratigraphy, dominated by tephra deposits and two-pyroxene andesite lavas. Dense tropical forests and poor access preclude mapping elsewhere on the volcano. In the “dead zone” four stratigraphic groups are distinguished by their relative proportions of lava and tephra. In general, early volcanism was dominated by voluminous lava emissions, with explosive plinian eruptions becoming increasingly more dominant with time. Numerous phreatic eruptions have occurred in historic times, all emanating from the Active Crater. The stratigraphic sequence is capped by the Río Blanco tephra deposit, erupted at approximately 3500 yr B.P. Approximately 0.25 km3 (0.1 km3 DRE) of tephra was deposited in a highly asymmetrical dispersal pattern west-southwest of the source vent, indicating strong prevailing winds from the east and east-northeast at the time of the eruption. Grain-size studies of the deposit reveal that the eruption was subplinian, attaining an estimated column height of 16 km. A qualitative hazards assessment at Rincón de la Vieja indicates that future eruptions are likely to be explosive in style, with the zone of greatest hazard extending several kilometers north from the Active Crater.  相似文献   

7.
The largest Plinian eruption of our era and the latest caldera-forming eruption in the Kuril-Kamchatka region occurred about cal. A.D. 240 from the Ksudach volcano. This catastrophic explosive eruption was similar in type and characteristics to the 1883 Krakatau event. The volume of material ejected was 18–19 km3 (8 km3 DRE), including 15 km3 of tephra fall and 3–4 km3 of pyroclastic flows. The estimated height of eruptive column is 22–30 km. A collapse caldera resulting from this eruption was 4 × 6.5 km in size with a cavity volume of 6.5–7 km3. Tephra fall was deposited to the north of the volcano and reached more than 1000 km. Pyroclastic flows accompanied by ash-cloud pyroclastic surges extended out to 20 km. The eruption was initially phreatomagmatic and then became rhythmic, with each pulse evolving from pumice falls to pyroclastic flows. Erupted products were dominantly rhyodacite throughout the eruption. During the post-caldera stage, when the Shtyubel cone started to form within the caldera, basaltic-andesite and andesite magma began to effuse. The trigger for the eruption may have been an intrusion of mafic magma into the rhyodacite reservoir. The eruption had substantial environmental impact and may have produced a large acidity peak in the Greenland ice sheet.  相似文献   

8.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   

9.
An extremely large magnitude eruption of the Ebisutoge-Fukuda tephra, close to the Plio-Pleistocene boundary, central Japan, spread volcanic materials widely more than 290,000 km2 reaching more than 300 km from the probable source. Characteristics of the distal air-fall ash (>150 km away from the vent) and proximal pyroclastic deposits are clarified to constrain the eruptive style, history, and magnitude of the Ebisutoge-Fukuda eruption.Eruptive history had five phases. Phase 1 is phreatoplinian eruption producing >105 km3 of volcanic materials. Phases 2 and 3 are plinian eruption and transition to pyroclastic flow. Plinian activity also occurred in phase 4, which ejected conspicuous obsidian fragments to the distal locations. In phase 5, collapse of eruption column triggered by phase 4, generated large pyroclastic flow in all directions and resulted in more than 250–350 km3 of deposits. Thus, the total volume of this tephra amounts over 380–490 km3. This indicates that the Volcanic Explosivity Index (VEI) of the Ebisutoge-Fukuda tephra is greater than 7. The huge thickness of reworked volcaniclastic deposits overlying the fall units also attests to the tremendous volume of eruptive materials of this tephra.Numerous ancient tephra layers with large volume have been reported worldwide, but sources and eruptive history are often unknown and difficult to determine. Comparison of distal air-fall ashes with proximal pyroclastic deposits revealed eruption style, history and magnitude of the Ebisutoge-Fukuda tephra. Hence, recognition of the Ebisutoge-Fukuda tephra, is useful for understanding the volcanic activity during the Pliocene to Pleistocene, is important as a boundary marker bed, and can be used to interpret the global environmental and climatic impact of large magnitude eruptions in the past.  相似文献   

10.
During 14–16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes (m b 4.7–5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake (m b 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1–2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown.  相似文献   

11.
We studied the distribution of tephra deposits discharged by the basaltic (52–54% SiO2) explosive eruption of 1973 on Tyatya Volcano (Kunashir I., Kuril Islands). We made maps showing lines of equal tephra thickness (isopachs) and lines of maximum size of pyroclastic particles (isopleths). These data were used to find the parameters of explosive activity using the standard techniques for each of the two phases of this eruption separately. The first, phreatomagmatic, phase discharged 0.008 km3 of tephra during the generation of maars on the volcano’s northern slope. The tephra mostly consisted of fragmented host rocks with admixtures of fragments of low vesiculated juvenile basalt. The phase lasted 20 hours, the rate of pyroclastic discharge was 2 × 105 kg/s; the eruptive plume reached heights of 4–6 km with wind speeds within 10 m/s. The second, magmatic, phase discharged 0.07 km3 of tephra during the generation of the Otvazhnyi scoria cone on the volcano’s southeastern slope. The tephra mostly consisted of juvenile basaltic scoria. The highly explosive Plinian part of this phase lasted 36 hours, the rate of pyroclastic discharge was 8 × 105 kg/s; the eruptive plume reached heights of 6–8 km with wind speeds of 10–20 m/s. The total tephra volume discharged by the eruption was approximately 0.08 km3; the total amount of ejected pyroclastic material (including the resulting monogenic edifices) was 0.11 km3; the volume of erupted magma was 0.05 km3 (the conversion was based on 2800 kg/m3 density); the volcanic explosivity index, or VEI, was 3. The production rate of the Tyatya plumbing system is estimated as 3 × 105 m3 magma per annum.  相似文献   

12.
On December 4, 1983 an eruption started at vents located 1.5 km southwest of the summit of Piton de la Fournaise at the base of the central cone. After 31 months of quiescence this was one of the longest repose period in the last fifty years. The eruption had two phases: December 4 to January 18 and January 18 to February 18. Phase 1 produced about 8 × 106 m3 of lava and Phase II about 9 × 106 m3. The erupted lava is an aphyric basalt whose mineralogical and geochemical composition is close to that of other lavas emitted since 1977.The precursors of the December 4 outbreak were limited to two-week shallow (1.5–3 km) seismic crisis of fewer than 50 events. No long-term increase was noted in the local seismicity which is very quiet during repose periods and no long-term ground inflation preceded the eruption. Outbreaks of Phases I and II were preceded by short (2.5 hours and 1.5 hours) seismic swarms corresponding to the rise of magma toward the surface from a shallow reservoir. Large ground deformation explained by the emplacement of the shallow intrusions, was recorded during the seismic swarms. A summit inflation was observed in early January, before the phase II outbreak, while the phase I eruption was still continuing.Piton de la Fournaise volcanological observatory was installed in 1980. Seismic and ground deformation data now available for a period of 4 years including the 1981 and the 1983–1984 eruptions, allow us to describe the physical behavior of the volcano during this period. These observations lead us to propose that the magma transfer from deep levels to the shallow magma reservoir is not a continuous process but a periodic one and that the shallow magma reservoir was not resupplied before the 1981 and 1983–1984 eruptions. Considerations on the eruptive history and the composition of recent lavas indicate that the reservoir was refilled in 1977.  相似文献   

13.
An eruption along a 2.5 km-long rhyolitic dyke at Krafla volcano, northern Iceland during the last glacial period formed a ridge of obsidian (Hrafntinnuhryggur). The ridge rises up to 80 m above the surrounding land and is composed of a number of small-volume lava bodies with minor fragmental material. The total volume is < 0.05 km3. The lava bodies are flow- or dome-like in morphology and many display columnar-jointed sides typical of magma–ice interaction, quench-fragmented lower margins indicative of interaction with meltwater and pumiceous upper surfaces typical of subaerial obsidian flows. The fragmental material compromises poorly-sorted perlitic quench hyaloclastites and poorly-exposed pumiceous tuffs. Lava bodies on the western ridge flanks are columnar jointed and extensively hydrothermally altered. At the southern end of the ridge the feeder dyke is exposed at an elevation  95 m beneath the ridge crest and flares upwards into a lava body.Using the distribution of lithofacies, we interpret that the eruption melted through ice only 35–55 m thick, which is likely to have been dominated by firn. Hrafntinnuhryggur is therefore the first documented example of a rhyolitic fissure eruption beneath thin ice/firn. The eruption breached the ice, leading to subaerial but ice/firn-contact lava effusion, and only minor explosive activity occurred. The ridge appears to have been well-drained during the eruption, aided by the high permeability of the thin ice/firn, which appears not to have greatly affected the eruption mechanisms. We estimate that the eruption lasted between 2 and 20 months and would not have generated a significant jökulhlaup (< 70 m3 s− 1).  相似文献   

14.
The eruption of 1631 A.D. was the most violent and destructive event in the recent history of Vesuvius. More than fifty primary documents, written in either Italian or Latin, were critically examined, with preference given to the authors who eyewitnessed volcanic phenomena. The eruption started at 7 a.m. on December 16 with the formation of an eruptive column and was followed by block and lapilli fallout east and northeast of the volcano until 6 p.m. of the same day. At 10 a.m. on December 17, several nuées ardentes were observed to issue from the central crater, rapidly descending the flanks of the cone and devastating the villages at the foot of Vesuvius. In the night between the 16th and 17th and on the afternoon of the 17th, extensive lahars and floods, resulting from rainstorms, struck the radial valleys of the volcano as well as the plain north and northeast.Deposits of the eruption were identified in about 70 localities on top of an ubiquitous paleosol formed during a long preeruptive volcanic quiescence. The main tephra unit consists of a plinian fallout composed of moderately vesicular dark green lapilli, crystals and lithics. Isopachs of the fallout are elongated eastwards and permit a conservative volume calculation of 0.07 km3. The peak mass flux deduced from clast dispersal models is estimated in the range 3–6 × 107 kg/s, corresponding to a column height of 17–21 km. East of the volcano the plinian fallout is overlain by ash-rich low-grade ignimbrite, surges, phreatomagmatic ashes and mud flows. Ash flows occur in paleovalleys around the cone of Vesuvius but are lacking on the Somma side, suggesting that pyroclastic flows had not enough energy to overpass the caldera wall of Mt. Somma. Deposits are generally unconsolidated, massive with virtually no ground layer and occasionally bearing sparse rests of charred vegetation. Past interpretations of the products emitted on the morning of December 17 as lava flows are inconsistent with both field observations and historical data. Features of the final phreatomagmatic ashes are suggestive of alternating episodes of wet ash fallout and rainfalls. Lahars interfingered with primary ash fallout confirm episodes of massive remobilization of loose tephra by heavy rainfalls during the final stage of the eruption.Chemical analyses of scoria clasts suggest tapping of magma from a compositionally zoned reservoir. Leucite-bearing, tephritic-phonolite (SiO2 51.17%) erupted in the early plinian phase was in fact followed by darker and slightly more mafic magma richer in crystals (SiO2 49.36%). During the nuées ardentes phase the composition returned to that of the early phase of the eruption.The reconstruction of the 1631 eruptive scenario supplies new perspectives on the hazards related to plinian eruptions of Vesuvius.  相似文献   

15.
《Journal of Geodynamics》2007,43(1):118-152
The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone.Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine).Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of “wet” eruptions and Strombolian to Plinian in terms of “dry” eruptions. In historical time the magma volume extruded by individual eruptions ranges from ∼1 m3 to ∼20 km3 DRE, reflecting variable magma compositions, effusion rates and eruption durations.All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as “Fires”, which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20–25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga–Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ–WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ∼4.5% of the eruptions is not known.Magma productivity over 1100 years equals about 87 km3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km3 (∼82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ–WVZ accounts for 13% of the magma and the NWZ and the intraplate belts for 2.5% each. Collectively the axial zone (RVZ, WVZ, NVZ) has only erupted 15–16% of total magma volume in the last 1130 years.  相似文献   

16.
We provide data concerning a weak phreatic eruption of Ekarma Volcano on Ekarma Island, in the Kurils, in June 2010. The ash plumes did not rise higher than 3 km above sea level. A preliminary estimate of the volume of erupted resurgent material (mostly tephra) is on order 2 × 105 m3. Reconstruction of the volcano??s history and the dynamics of its eruptive activity for the last 4500?C5000 years suggests that a larger eruption can occur during the next few decades that will discharge juvenile pyroclastics and/or lava.  相似文献   

17.
18.
At Cotopaxi volcano, Ecuador, rhyolitic and andesitic bimodal magmatism has occurred periodically during the past 0.5 Ma. The sequential eruption of rhyolitic (70–75% SiO2) and andesitic (56–62% SiO2) magmas from the same volcanic vent over short time spans and without significant intermingling is characteristic of Cotopaxi’s Holocene behavior. This study documents the eruptive history of Cotopaxi volcano, presenting its stratigraphy and geologic field relations, along with the relevant mineralogical and chemical nature of the eruptive products, in order to determine the temporal and spatial relations of this bimodal alternation. Cotopaxi’s history begins with the Barrancas rhyolite series, dominated by pumiceous ash flows and regional ash falls between 0.4 and 0.5 Ma, which was followed by occasional andesitic activity, the most important being the ample andesitic lava flows (∼4.1 km3) that descended the N and NW sides of the edifice. Following a ∼400 ka long repose without silicic activity, Cotopaxi began a new eruptive phase about 13 ka ago that consisted of seven rhyolitic episodes belonging to the Holocene F and Colorado Canyon series; the onset of each episode occurred at intervals of 300–3,600 years and each produced ash flows and regional tephra falls with DRE volumes of 0.2–3.6 km3. Andesitic tephras and lavas are interbedded in the rhyolite sequence. The Colorado Canyon episode (4,500 years BP) also witnessed dome and sector collapses on Cotopaxi’s NE flank which, with associated ash flows, generated one of the largest cohesive debris flows on record, the Chillos Valley lahar. A thin pumice lapilli fall represents the final rhyolitic outburst which occurred at 2,100 years BP. The pumices of these Holocene rhyolitic eruptions are chemically similar to those of older rhyolites of the Barrancas series, with the exception of the initial eruptive products of the Colorado Canyon series whose chemistry is similar to that of the 211 ka ignimbrite of neighboring Chalupas volcano. Since the Colorado Canyon episode, andesitic magmatism has dominated Cotopaxi’s last 4,400 years, characterized by scoria bomb and lithic-rich pyroclastic flows, infrequent lava flows that reached the base of the cone, andesitic lapilli and ash falls that were carried chiefly to the W, and large debris flows. Andesitic magma emission rates are estimated at 1.65 km3 (DRE)/ka for the period from 4,200 to 2,100 years BP and 1.85 km3 (DRE)/ka for the past 2,100 years, resulting in the present large stratocone.  相似文献   

19.
The tephra fallout from the 12–15 August 1991 explosive eruption of Hudson volcano (Cordillera de los Andes, 45°54 S-72°58 W; Chile) was dispersed on a narrow, elongated ESE sector of Patagonia, covering an area (on land) of more than 100 000 km2. The elongated shape of the deposit, together with the relatively coarse mean and median values of the particles at a considerable distance from the vent, were the result of strong winds blowing to the southeast during the eruption. The thickness of the fall deposit decreases up to 250 km ESE from Hudson volcano, where it begins to thicken again. Secondary maxima are well developed at approximately 500 km from the vent. Secondary maxima, together with grainsize bimodality in individual layers and in the bulk deposit suggest that particle aggregation played an important role in tephra sedimentation. The fallout deposit is well stratified, with alternating fine-grained and coarsegrained layers, which is probably a result of strong eruptive pulses followed by relatively calm periods and/or changes in the eruptive style from plinian to phreatoplinian. The tephra is mostly composed of juvenile material: the coarse mode (mostly pumice) shifts to finer sizes with distance from the volcano; the fine mode (mostly glass shards) is always about 5/6 phi. Glass shards and pumice are mostly light gray to colorless. However, considerable amounts of dark, poorly vesiculated, blocky shards, suggest a hydromagmatic component in the eruption. A land-based tephra volume of 4.35 km3 was estimated, and a total volume of 7.6 km3 arose from an extrapolation, which took into account the probable volume sedimented in the sea. Bulk density ranges from 0.9 to 1.10 gr/cm3 (beyond 110 km from the vent). Rather uniform density values measured in crushed samples (2.45–2.50 gr/cm3 at all distances from the vent) reveal a relatively homogeneous composition. Mean and median sizes decrease rapidly up to 270 km from the vent; beyond that point they are more or less constant, whereas the maximum size (1 phi) shows a steady decrease up to 550 km. A concomitant improvement in sorting is observed. This is attributed to sorting due to wind transport combined with particle aggregation at different times and distances from the vent. The Hudson tephra fallout shares some strikingly similar features with the Mount St. Helens (18 May 1980) and Quizapu (1932) eruptions.  相似文献   

20.
This paper presents the results from the detailed analysis of aerial photographs and space images for the Kizimen area, which characterize the geologic and geomorphologic effects of the ongoing eruption over the 2010–2011 period. It is shown that the total volume (>0.5 km3) and total mass (>109 t) of the discharged (resurgent plus juvenile) material makes this eruption the most productive in Kamchatka for the first 12 years of the 21st century. The dominant component (>90%) is juvenile material with andesitic composition. The pyroclastics (tephra, deposits of the juvenile pyroclastic avalanches and incandescent debris avalanches) comprise >0.3 km3and >0.45× 109 t, the lava (a very thick block lava flow 3.052 km long and 2.163 km2 in area) occupies about 0.195 km3 and 0.45 × 109 t. With the exception of the tephra, which fell over an area of about 100000 km2, the rest of the material was accumulated on the Kizimen cone and at its base. The mean discharge rate of juvenile ejecta was about 15 m3/s (29 t/s) for 13 months (November 11, 2010 to December 11, 2011). Appreciable changes also occurred at the near-summit part of the volcano’s cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号