首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High sedimentation rates along river-dominated margins make these systems important repositories for organic carbon derived from both allochthonous and autochthonous sources. Using elemental carbon/nitrogen ratios, molecular biomarker (lignin phenol), and stable carbon isotopic (bulk and compound-specific) analyses, this study examined the sources of organic carbon to the Louisiana shelf within one of the primary dispersive pathways of the Mississippi River. Surface sediment samples were collected from stations across the inner, mid, and outer Louisiana shelf, within the Mississippi River plume region, during two cruises in the spring and fall of 2000. Lignin biomarker data showed spatial patterns in terrestrial source plant materials within the river plume, such that sediments near the mouth of the Mississippi River were comparatively less degraded and richer in C4 plant carbon than those found at mid-depth regions of the shelf. A molecular and stable isotope-based mixing model defining riverine, marsh, and marine organic carbon suggested that the highest organic carbon inputs to the shelf in spring were from marine sources (55?C61% marine organic carbon), while riverine organic carbon was the highest (63%) in fall, likely due to lower inputs of marine organic carbon at this time compared with the spring season. This model also indicated that marsh inputs, ranging from 19 to 34% and 3?C15% of the organic carbon in spring and fall, respectively, were significantly more important sources of organic carbon on the inner Louisiana shelf than previously suggested. Finally, we propose that the decomposition of terrestrial-derived organic carbon (from the river and local wetlands sources) in mobile muds may serve as a largely unexplored additional source of oxygen-consuming organic carbon in hypoxic bottom waters of the Louisiana shelf.  相似文献   

2.
The Mississippi River system ranks among the world's top 10 rivers in freshwater and sediment inputs to the coastal ocean. The river contributes 90% of the freshwater loading to the Gulf of Mexico, and terminates amidst one of the United States' most productive fisheries regions and the location of the largest zone of hypoxia, in the western Atlantic Ocean. Significant increases in riverine nutrient concentrations and loadings of nitrate and phosphorus and decreases in silicate have occurred this century, and have accelerated since 1950. Consequently, major alterations have occurred in the probable nutrient limitation and overall stoichiometric nutrient balance in the adjacent continental shelf system. Changes in the nutrient balances and reduction in riverine silica loading to, the continental shelf appear to have led to phytoplankton species shifts offshore and to an increase in primary production. The phytoplankton community response, as indicated by long-term changes in biological uptake of silicate and accumulation of biologically bound silica in sediments, has shown how the system has responded to changes in riverine nutrient loadings. Indeed, the accumulation of biologically bound silica in sediments beneath the Mississippi River plume increased during the past two decades, presumably in response to, increased nitrogen loading. The duration, size, and severity of hypoxia has probably increased as a consequence of the increased primary production. Management alternatives directed at water pollution issues within the Mississippi River watershed may have unintended and contrasting impacts on the coastal waters of the northern Gulf of Mexico.  相似文献   

3.
We update and reevaluate the scientific information on the distribution, history, and causes of continental shelf hypoxia that supports the 2001 Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001), incorporating data, publications, and research results produced since the 1999 integrated assessment. The metric of mid-summer hypoxic area on the LouisianaTexas shelf is an adequate and suitable measure for continued efforts to reduce nutrients loads from the Mississippi River and hypoxia in the northern Gulf of Mexico as outlined in the Action Plan. More frequent measurements of simple metrics (e.g., area and volume) from late spring through late summer would ensure that the metric is representative of the system in any given year and useful in a public discourse of conditions and causes. The long-term data on hypoxia, sources of nutrients, associated biological parameters, and paleoindicators continue to verify and strengthen the relationship between the nitratenitrogen load of the Mississippi River, the extent of hypoxia, and changes in the coastal ecosystem (eutrophication and worsening hypoxia). Multiple lines of evidence, some of them representing independent data sources, are consistent with the big picture pattern of increased eutrophication as a result of long-term nutrient increases that result in excess carbon production and accumulation and, ultimately, bottom water hypoxia. The additional findings arising since 1999 strengthen the science supporting the Action Plan that focuses on reducing nutrient loads, primarily nitrogen, through multiple actions to reduce the size of the hypoxic zone in the northern Gulf of Mexico.  相似文献   

4.
Surface sediment samples at 89 locations and 300-cm cores from 43 sites in the Mississippi Sound were examined for evidence of pollutant impact upon this coastal environment. Chemical variables determined were total organic carbon, Kjeldahl nitrogen, phenols, and hydrocarbons. Values of these pollutant indicators were about the same or lower in Gulf of Mexico samples compared to Missippi Sound sediments and considerably lower than those from rivers and bays emptying into the sound, indicating limited impact from sites of pollutant sources into the sound. Concentrations of sedimentary pollutants peaked in the Pascagoula River where levels of total organic carbon (TOC), Kjeldahl nitrogen (TKN), phenols, and hydrocarbons exceeded sound values by one to three orders of magnitude. Analysis of cores shows pollutant intrusion to sediment strata predating industrial development. The level of pollution varies from site to site but fortunately is only serious at localized sites within the sound.  相似文献   

5.
Shelf sediments from near the mouth of the Mississippi River were collected and analyzed to examine whether records of the consequences of anthropogenic nutrient loading are preserved. Cores representing approximately 100 yr of accumulation have increasing concentrations of organic matter over this period, indicating increased accumulation of organic carbon, rapid early diagenesis, or a combination of these processes. Stable carbon isotopes and organic tracers show that virtually all of this increase is of marine origin. Evidence from two cores near the river mouth, one within the region of chronic seasonal hypoxia and one nearby but outside the hypoxic region, indicate that changes consistent with increased productivity began by approximately the mid-1950s when the inorganic carbon in benthic forams rapidly became isotopically lighter at both stations. Beginning in the mid-1960s, the accumulation of organic matter, organic δ13C, and δ15N all show large changes in a direction consistent with increased productivity. This last period coincides with a doubling of the load of nutrients from the Mississippi River, which levelled off in the mid-1980s. These data support the hypothesis that anthropogenic nutrient loading has had a significant impact on the Louisiana shelf.  相似文献   

6.
Net remineralization rates of organic matter and bacterial growth rates were observed in dark-bottle incubation experiments conducted in July–August and February with water samples collected from sites in the Mississippi River plume of the Gulf of Mexico. Our objectives were to measure site-specific degradation rates of labile dissolved and particulate organic matter, quantify the potential importance of bacteria in these processes, and examine the kinetics of degradation over time. Unfiltered samples, and samples treated to remove (or dilute out) particles larger than bacteria, were enclosed in 9-1 bottles and incubated in the dark for 3–5 d. Respiration rates and inorganic compound accumulation rates were higher in summer than in winter and were highest in unfiltered surface samples at sites of intermediate salinities where phytoplankton were most abundant. The ratio of ammonium accumulation to oxygen removal in summer experiments suggested that the mineralized organic material resembled “Redfield” stoichiometry. Chemical fluxes were greater in bottles containing large (>1–3 μm) particles than in the bottles with these particles removed, but bacterial activities were generally similar in both treatments. These results suggest that particle consumers were an important component of total organic matter degradation. However, these experiments may have underestimated natural bacterial degradation rates because the absence of light could affect the production of labile organic substrates by phytoplankton. In agreement, with this hypothesis, bacterial growth rates tended to decrease over time in summer in surface plume waters where phytoplankton were abundant. In conjunction with other data, our results indicate that heterotrophic processes in the water column are spatially and temporally dependent on phytoplankton production.  相似文献   

7.
The Delaware River and Bay Estuary is one of the major urbanized estuaries of the world. The 100-km long tidal river portion of the estuary suffered from major summer hypoxia in the past due to municipal and industrial inputs in the urban region; the estuary has seen remarkable water quality improvements from recent municipal sewage treatment upgrades. However, the estuary still has extremely high nutrient loading, which appears to not have much adverse impact. Since the biogeochemistry of the estuary has been relatively similar for the past two decades, our multiple year research database is used in this review paper to address broad spatial and seasonal patterns of conditions in the tidal river and 120 km long saline bay. Dissolved oxygen concentrations show impact from allochthonous urban inputs and meteorological forcing as well as biological influences. Nutrient concentrations, although high, do not stimulate excessive algal biomass due to light and multiple nutrient element limitations. Since the bay does not have strong persistent summer stratification, there is little potential for bottom water hypoxia. Elevated chlorophyll concentrations do not exert much influence on light attenuation since resuspended bottom inorganic sediments dominate the turbidity. Dissolved inorganic carbon and dissolved and particulate organic carbon distributions show significant variability from watershed inputs and lesser impact from urban inputs and biological processes. Ratios of dissolved and particulate carbon, nitrogen, and phosphorus help to understand watershed and urban inputs as well as autochthonous biological influences. Owing to the relatively simple geometry of the system and localized anthropogenic inputs as well as a broad spatial and seasonal database, it is possible to develop these biogeochemical trends and correlations for the Delaware Estuary. We suggest that this biogeochemical perspective allows a revised evaluation of estuarine eutrophication that should have generic value for understanding other estuarine and coastal waters.  相似文献   

8.
We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.  相似文献   

9.
Dissolved organic nitrogen (DON) in near-surface (<20 m depth) waters of the Texas-Louisiana continental shelf is the predominant form of total dissolved nitrogen that is advected by the Mississippi-Atchafalaya River plume. Relatively high DON concentrations associated with low-salinity (<33 psu) waters throughout the year can be traced within the plume along the Texas-Louisiana inner shelf. DON concentrations throughout the shelf were significantly higher near the Mississippi-Atchafalaya outflow region relative to downstream inner Gulf shelf locations. Significant intercruise variations were also evident, with the highest concentrations during May 1992 and lower values in October 1992. At a fixed location off the Mississippi River outflow region DON concentration covaried inversely with salinity on time scales of hours to months, confirming that source water is a determining factor for variations of bulk DON concentrations in the region. Similar variations in upper water DON concentrations at different locations and seasons occurred in both plume and nonplume waters, which resembled the seasonal concentration changes of riverine nitrogen, and show that this pool is useful in tracing the influence of riverine-derived nitrogen on the overall nitrogen balance of the NW Gulf of Mexico’s continental shelf. Plume and nonplume DON concentrations deviated from mixing lines between riverine and oceanic endmembers, suggesting that plume waters may be a sink and nonplume waters may be a source of a labile fraction of DON in the region.  相似文献   

10.
Microbial communities inhabiting “subterranean estuaries” along the subsurface freshwater–saltwater continuum determine the fate of nitrogen discharged to coastal waters. Little is known about the microbes that comprise these communities, or what their ecological and biogeochemical responses will be to increased salinity resulting from saltwater intrusion and aquifer salinization. This review covers basic aspects of the nitrogen cycle relevant to the coastal subsurface and provides a framework for predicting the types of microbes and nitrogen transformations that exist in different subterranean estuary systems. Literature concerning the freshwater–saltwater mixing zones of surficial estuaries, where microbial communities are better characterized, is also reviewed to explore what is known about the impact of increasing salinity on both the community composition and biogeochemical function of the microbial assemblage. Collectively, these studies suggest that salinization will alter microbial community composition for all functional groups involved in nitrogen cycling, and may lead to decreases in nitrification and coupled nitrification-denitrification, and increases in dissimilatory nitrate reduction to ammonium (DNRA). Future collaboration between hydrogeologists and microbial ecologists is needed to fully predict the impact of saltwater intrusion on subsurface microbial communities.  相似文献   

11.
The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extraction solutions containing weak (i.e., CH3COO) or strong (i.e., ) ligands. The experimental results indicate that, in the absence of strong REE complexing ligands in solution, the amount of REEs released from the sand is small and the fractionation pattern of the released REEs appears to be controlled by the surface stability constants for REE sorption with Fe(III) oxides/oxyhydroxides. In the presence of strong solution complexing ligands, however, the amount and the fractionation pattern of the released REEs reflect the strength and variation of the stability constants of the dominant aqueous REE species across the REE series. The varying amount of REEs extracted by the different organic matter employed in the experiments indicates that organic matter from different sources has different complexing capacity for REEs. However, the fractionation pattern of REEs extracted by the various organic matter used in our experiments is remarkable consistent, being independent of the source and the concentration of organic matter used, as well as solution pH. Because natural aquifer sand and unpurified organic matter were used in our experiments, our experimental conditions are more broadly similar to natural systems than many previous laboratory experiments of REE-humic complexation that employed purified humic substances. Our results suggest that the REE loading effect on REE-humic complexation is negligible in natural waters as more abundant metal cations (e.g., Fe, Al) out-compete REEs for strong binding sites on organic matter. More specifically, our results indicate that REE complexation with organic matter in natural waters is dominated by REE binding to weak sites on dissolved organic matter, which subsequently leads to a middle REE (MREE: Sm-Ho)-enriched fractionation pattern. The experiments also indicate that carbonate ions may effectively compete with fulvic acid in binding with dissolved REEs, but cannot out compete humic acids for REEs. Therefore, in natural waters where low molecular weight (LMW) dissolved organic carbon (DOC) is the predominant form of DOC (e.g., lower Mississippi River water), REEs occur as “truly” dissolved species by complexing with carbonate ions as well as FA, resulting in heavy REE (HREE: Er-Lu)-enriched shale-normalized fractionation patterns. Whereas, in natural terrestrial waters where REE speciation is dominated by organic complexes with high molecular weight DOC (e.g., “colloidal” HA), only MREE-enriched fractionation patterns will be observed because the more abundant, weak sites preferentially complex MREEs relative to HREEs and light REEs (LREEs: La-Nd).  相似文献   

12.
Dispersal of river sediments in coastal seas: Six contrasting cases   总被引:2,自引:0,他引:2  
The fate of sediment seaward of river mouths involves at least four stages: supply via plumes; initial deposition; resuspension and transport by marine processes; and long-term net accumulation. The processes that operate at each stage, and relative roles of each stage in governing the long-term accumulation patterns, vary appreciably with river regime and coastal ocean environment. To illustrate the diversity and illuminate the process of dispersal, information is synthesized for six systems: Amazon, Changjiang, Mississippi, Columbia, Purari, and Huanghe. These systems differ markedly in terms of water discharge, sediment discharge, and coastal energy regime and much of the diversity of dispersal patterns is attributed to these differences as well as to the temporal sequencing of river discharge relative to oceanographic transport processes. Although the sediment: water ratio of the discharge of the Mississippi River is 70 times less than that of the Huanghe, both of these systems exhibit rapid deposition and accumulation of sediments near the river mouths. In contrast, sediments dispersed by, the other four systems are transported greater distances from the mouths by oceanographic processes, and are accumulating over relatively wide areas.  相似文献   

13.
Isotopes have often been used to discern riverine subsidies to coastal food chains, but there are few direct measurements of nutritional quality of riverine particulates. We tested for nutritionally enriched organic matter in the Mississippi River suspended sediment and evidence for its delivery to Louisiana coastal sediments by measuring enzymatically hydrolysable amino acids (EHAA). Riverine suspended sediments contained EHAA concentrations of up to 5 mg g?1, higher than reported in any coastal sediment. Pigment concentrations indicated that EHAA in some river samples were dominated by phytoplankton, but many samples contained significant non-algal EHAA. Coastal sediments showed EHAA concentrations lower than riverine sediments but still higher than most reported shelf values. Incubation of riverine sediment showed losses of 28–34% of their EHAA over 6 days, similar to differences found between riverine and coastal sediments. EHAA concentrations decreased more rapidly than total nitrogen, indicating the relative lability of this pool of material in the studied region. These EHAA-enriched materials provide fuel for various coastal biota whose composition likely depends on factors such as disturbance regimes.  相似文献   

14.
The localized impact of blooms of the mixotrophic ciliate Myrionecta rubra in the Columbia River estuary during 2007–2010 was evaluated with biogeochemical, light microscopy, physiological, and molecular data. M. rubra affected surrounding estuarine nutrient cycles, as indicated by high and low concentrations of organic nutrients and inorganic nitrogen, respectively, associated with red waters. M. rubra blooms also altered the energy transfer pattern in patches of the estuarine water that contain the ciliate by creating areas characterized by high primary production and elevated levels of fresh autochthonous particulate organic matter, therefore shifting the trophic status in emergent red water areas of the estuary from net heterotrophy towards autotrophy. The pelagic estuarine bacterial community structure was unaffected by M. rubra abundance, but red waters of the ciliate do offer a possible link between autotrophic and heterotrophic processes since they were associated with elevated dissolved organic matter and showed a tendency for enhanced microbial secondary production. Taken together, these findings suggest that M. rubra red waters are biogeochemical hotspots of the Columbia River estuary.  相似文献   

15.
Nutrient and trace element distributions were determined in the outflow region of the Mississippi and Atchafalaya rivers during high river discharge. This outflow region can be divided into two physiographic areas: the broad, shallow Louisiana Shelf off the Atchafalaya River and the narrow shelf off the Mississippi Delta. The physiographic differences between these two areas lead to observable differences in the chemical distributions. During high discharge conditions, nutrient depletion occurs at lower salinities on the Louisiana Shelf, relative to the delta outflow plume, and significant uptake of nickel and cadmium is apparent in these shelf waters, too. Important factors that appear to connect the physiographic to the chemical include the fate of the fluvial suspended load, rates of mixing, and the extent of productivity supported by recycled nutrients. The results suggest that the Mississippi-Atchafalaya outflow region may provide a natural laboratory for examining the possible effects of sea-level change on the biogeochemistry of estuarine and coastal environments.  相似文献   

16.
The Danshuei River flows through the heavily populated metropolitan area of Taipei and New Taipei cities, which causes remarkable additions of nutrient elements. In spite of the rather short residence time of water, the Danshuei estuary is distinctive for the very high ammonium concentration and extensive hypoxia in its lower reach. Because particulate organic matter (POM) is potentially the culprit of hypoxia, we investigate the isotopic characteristics of POM collected in February and July 2009 at a fixed station over four semidiurnal tidal cycles. By using nitrogen isotopic composition and C/N ratio of POM, we derive the relative contributions of POM from different sources. One potential source that combines dead and living phytoplankton, phytodetritus, has δ15N values that can be predicted by the δ15N of ammonium and the isotope effect during ammonium uptake; however, the isotope effect is concentration dependent. We employ a three-end-member mixing model based on δ15N and C/N ratio to calculate the fractional contributions from three major POM sources, i.e., phytodetritus, soil, and sediment. Sensitivity test was conducted for the derivations from both carbon and nitrogen basis. For February 2009 we found the three fractions (in terms of contribution to the particulate organic carbon) to be 45 ± 19, 10 ± 11 and 45 ± 13 %, respectively; for July 2009, 71 ± 18, 11 ± 10 and 18 ± 13 %, respectively. The results imply that phytodetritus is probably the major culprit for the hypoxic conditions in the estuary, especially, in summer.  相似文献   

17.
Since 1990s, spectral analysis has become an important technique to characterize the properties of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) from various aquatic systems and a series of spectral indices have been suggested to trace the sources of DOM and their biogeochemical regulation processes. DOM samples were collected from an aquatic continuum from watershed to deep ocean, i.e. Zhangjiang River and Estuary, Dongshan Bay, Taiwan Strait, Northeast basin of the South China Sea, Luzon Strait and the vertical profile of the Kuroshio region of the West Pacific Ocean. This continuum covered many critical interfaces (land-ocean, shelf-basin, marginal sea basin-open ocean and euphotic and aphotic layer). The spatial distribution and variation of various qualitative and quantitative parameters along the continuum were clearly revealed. Combined with literature review, the sources and sinks of CDOM/FDOM and their inherent regulation processes under significant hydrological and biogeochemical gradient variation were systematically summarized. The geochemical differentiation of the quantitative DOM spectral index in various aquatic systems was discussed. The tracing ability of the qualitative DOM spectral index was commented. The coupling study of soil-river organic matter systems, mechanism of mineralization-related microbial production of CDOM/FDOM, quantified geochemical framework concept and perturbation of global change on CDOM/FDOM dynamics were suggested as future key topics.  相似文献   

18.
Soluble reactive phosphorus (SRP) has recently been shown to be one of the limiting nutrients for the growth of phytoplankton in the northern Gulf of Mexico. We show here that during the past decade, SRP concentrations in the lower reaches of North America's largest river, the Mississippi River, were highest in summer and lowest in winter and positively correlated with water temperature. Upstream data showed this coupling to increase in a downstream trend in the Mississippi main stem. Water quality data analysis and phosphorus mass balances were conducted to examine the controls of this relationship. The results showed that the positive SRP–temperature correlation in the Mississippi River system was largely a result of gradual dilution of SRP-enriched upper Mississippi River waters, which contributed most to the Mississippi River during summer, by SRP-depleted waters from the Ohio and other tributaries. Particle buffering and organic matter mineralization might play a role in the observed SRP–temperature relationship, but their importance relative to tributary effects is not quantified. Future work on the seasonal dynamics of SRP in large river systems needs to consider the effects of both tributary dilution and in situ processes.  相似文献   

19.
The carbon and nitrogen isotope composition of organic matter has been widely used to trace biogeochemical processes in marine and lacustrine environments. In order to reconstruct past environmental changes from sedimentary organic matter, it is crucial to consider potential alteration of the primary isotopic signal by bacterial degradation in the water column and during early diagenesis in the sediments.In a series of oxic and anoxic incubation experiments, we examined the fate of organic matter and the alteration of its carbon and nitrogen isotopic composition during microbial degradation. The decomposition rates determined with a double-exponential decay model show that the more reactive fraction of organic matter degrades at similar rates under oxic and anoxic conditions. However, under oxic conditions the proportion of organic matter resistent to degradation is much lower than under anoxic conditions. Within three months of incubation the δ13C of bulk organic matter decreased by 1.6‰ with respect to the initial value. The depletion can be attributed to the selective preservation of 13C-depleted organic compounds. During anoxic decay, the δ15N values continuously decreased to about 3‰ below the initial value. The decrease probably results from bacterial growth adding 15N-depleted biomass to the residual material. In the oxic experiment, δ15N values increased by more then 3‰ before decreasing to a value indistinguishable from the initial isotopic composition. The dissimilarity between oxic and anoxic conditions may be attributed to differences in the type, timing and degree of microbial activity and preferential degradation. In agreement with the anoxic incubation experiments, sediments from eutrophic Lake Lugano are, on average, depleted in 13C (−1.5‰) and 15N (−1.2‰) with respect to sinking particulate organic matter collected during a long-term sediment trap study.  相似文献   

20.
海岸带潮滩生源要素生物地球化学循环过程是国际地圈生物圈计划(IGBP)、海岸带陆海交互作用(LOICZ)研究的重要内容,也是全球变化区域响应研究中的重要组成部分。在过去的10~20年之间,潮滩生源要素氮的生物地球化学循环研究得到了长足的发展。基于此,较为全面、系统地总结和分析了有关潮滩氮营养盐的来源、潮滩氮素的物理、化学和生物迁移转化过程及氮素地球化学循环过程中底栖生物效应等一系列研究成果,并提出了今后潮滩生源要素氮的生物地球化学循环研究重点和发展趋向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号