首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Banded iron formation (BIF) comprising high grade iron ore are exposed in Gorumahisani‐Sulaipat‐Badampahar belt in the east of North Orissa Craton, India. The ores are multiply deformed and metamorphosed to amphibolite facies. The mineral assemblage in the BIF comprises grunerite, magnetite/martite/goethite and quartz. Relict carbonate phases are sometimes noticed within thick iron mesobands. Grunerite crystals exhibit needles to fibrous lamellae and platy form or often sheaf‐like aggregates in linear and radial arrangement. Accicular grunerite also occur within intergranular space of magnetite/martite. Grunerite needles/accicules show higher reflectivity in chert mesoband and matching reflectance with that of adjacent magnetite/martite in iron mesoband. Some grunerite lamellae sinter into micron size magnetite platelets. This grunerite has high ferrous oxide and cobalt oxide content but is low in Mg‐ and Mn‐oxide compared to the ones, reported from BIFs, of Western Australia, Nigeria, France, USA and Quebec. The protolith of this BIF is considered to be carbonate containing sediments, with high concentrations of Fe and Si but lower contents of cobalt and chromium ± Mg, Mn and Ni. During submarine weathering quartz, sheet silicate (greenalite) and Fe‐Co‐Cr (Mg‐Mn‐Ni)‐carbonate solid solution were formed. At the outset of the regional metamorphic episode grunerite, euhedral magnetite and recrystalized quartz were developed. Magnetite was grown at the expense of carbonate and later martitized under post‐metamorphic conditions. With the increasing grade of metamorphism greenalite transformed to grunerite.  相似文献   

2.
BUTLER  P.  Jr. 《Journal of Petrology》1969,10(1):56-101
Forty-seven specimens of the Wabush Iron Formation were collectedfrom ten outcrop areas. Twenty-five specimens contain the assemblage(1), quartz+clinopyroxene+calcite with or without orthopyroxene,grunerite, magnetite, ankerite, and siderite. Five specimenscontain assemblage (2), quartz+clinopyroxene+actinolite+calcite+magnetite+hematite,and two contain assemblage (3), quartz+orthopyroxene+actinolite+magnetite+hematite.In three specimens of assemblage (1), graphite occurs in theabsence of magnetite; pyrrhotite and pyrite occur separatelyor together in specimens with assemblage (1). Thirty-nine clinopyroxenes, 38 orthopyroxenes, 18 grunerites,7 actinolites, 16 calcites, 1 ankerite, and 1 siderite wereanalyzed for iron, manganese, and calcium by X-ray emissionspectrography. Magnesium contents were estimated by assumingstoichiometric proportions. Minerals occurring with hematite show low Fe/(Fe+Mg) ratios,and those in the other assemblages show higher values with awide range of variation. In orthopyroxene, Fe/(Fe+ Mg) rangesfrom 0·17 (with hematite) to 0·77. Regularity in the distributions of Fe, Mn, and Ca between pairsof coexisting minerals shows that equilibrium was attained inmost of the rocks studied. This regularity is also accomplishedin the distribution of Mn between calcite and coexisting silicatesas well as between the silicates themselves. Small differencesin the distributions of Ca and Fe depend on both outcrop areaand mineral assemblage. Phase rule considerations suggest that the specimens with dolomite-ankeriteor magnesitesiderite do not represent equilibrium assemblages.Variations in orthopyroxene compositions in assemblages withpyrite or pyrrhotite, or both, and magnetite indicate non-equilibrationof sulfides with silicates. The presence of the oxygen buffer,magnetite+hematite, attests to the immobility of oxygen duringmetamorphism. Within each outcrop area, over which the temperature and pressureare assumed to have been uniform, variations in the compositionsof the silicates in the sub-assemblages quartz+ orthopyroxene+gruneriteand quartz+orthopyroxene+clinopyroxene+calcite indicate gradientsof µH2O µCO2 and respectively. As characterizedby the composition of orthopyroxene, both gradients are relativelylow along strike, and high across strike. The direction of gradientsacross strike is almost without reversals, which is consistentwith intergranular diffusion of H2O and CO2. Phase rule restrictionsfor a majority of assemblages are not in accord with the simultaneousimposition of µH2O and µCO2 gradients on the rocks,nor the formation of an H2O-CO2 fluid phase during metamorphism.  相似文献   

3.
The Ouenza siderite deposit is located proximal to evaporitic diapirs of Triassic age. Mineralization occurs mainly in Aptian neritic limestones which host important iron concentrations (120–150 MT) and minor Pb, Zn, Cu, Ba and F occurrences. The iron ore consists of iron carbonate minerals which have been oxidized partially to hematite. Fine-grained ankerite and siderite replace limestones, whereas sparry ankerite and siderite were emplaced in veins. Limited variation in the chemical and isotopic compositions of ankerite and siderite were observed, which indicate that they precipitated from the same fluid. Stable isotope compositions (δ18O and δ13C) of iron carbonates and limestones allow estimation of the isotopic composition of the mineralizing fluid and precipitation temperature: δ18O = 7.5‰ SMOW, T = 100–120 °C. Later deposition of Pb, Zn, Cu, Ba and F minerals is controlled by fractures oriented NE–SW and SE–NW. Fluid inclusion studies of quartz yield salinities of 18–22 wt.% equivalent NaCl and homogenization temperatures between 150 and 180 °C. These values are similar to those of Mississippi Valley type deposits which are associated with basinal brines. Received: 4 January 1996 / Accepted: 17 July 1996  相似文献   

4.

During Renzy Mines Ltd. exploration programme in 1972, an iron-formation was found in the Midternæs area north east of Ivigtut, South-West Greenland. It contains up to 32.9% Fe. The dominant mineral is greenalite, with minor amounts of magnetite, siderite and quartz. It was found in the northernmost part of the Ketilidian supracrustals (? 1800 m.y.), which are non-metamorphosed or very weakly metamorphosed. The iron-formation is suggested to be of submarine-exhalative origin, and precipitated in a moderately deep sea at low atmospheric O2 pressure.

  相似文献   

5.
The Ordovician-Lower Carboniferous sequence of slightly metamorphosed gray carbonate-terrigenous rocks contains the Silurian black cherty shales enriched in carbon (6–9%), pyrite (6–7%), and uranium (∼30 ppm). The uranium ore is localized at the pinch-out of areal and linear zones of the Early Permian supergene (exogenic) oxidation of rocks expressed in reddening (hematitization). U, As, Sb, Cu, Ni, Mo, and Ag have been removed from the oxidized black shales and concentrated in the cementation zone in form of pitchblende and sulfides in wall-rock disseminations and veinlets largely hosted in carbonate-bearing rocks. In the Late Permian, during deposition of the upper Rotliegende and Zechstein, the fractures in the basement were filled with carbonates and sulfates; uranium was partly redeposited along with enrichment in Pb and Zn. Mesozoic and Cenozoic supergene processes altered uranium ore insignificantly.  相似文献   

6.
We studied ferrous paralava, a high-temperature rock, produced by complete fusion of the sedimentary protolith in the Ravat natural coal fire which has been on for over two thousand years. The paralava was sampled from the Fan-Yagnob coal deposit at the Kukhi-Malik site in the vicinity of former Ravat Village in central Tajikistan. This rock contains fayalite, sekaninaite, hercynite, Ti-magnetite, tridymite, and siliceous glass. Low-Ca pyroxene (clinoferrosilite), globules of sulfides (mainly pyrrhotite) and Fe-Ti oxides, secondary greenalite (after fayalite) and hematite are minor. Paralava includes xenoliths of partially molten clinkers (up to 20 vol.%) composed of mullite, cordierite, tridymite, and relict detrital quartz. We found relatively high Fe contents (100?Fe/(Fe+Mg) > 60) in mafic minerals, high K2O enrichment (up to 1.4 wt.%) in sekaninaite, and an unusually low CaO content (0.5 wt.%) in the rock. The Ravat paralava appears to be derived from a mixture of pelitic rocks (50–70%) and iron-rich rocks (30–50%), but without participation of calcareous material, which explains the low CaO and the absence of plagioclase and Ca-bearing pyroxene. The primary melt was as hot as >1210 °C, and the coal-fired fayalite-sekaninaite paralava crystallized at 1200–1100 °C, at a relatively low oxygen fugacity (near the QFM buffer), outside the zone of active aeration. Large-scale crystallization of ferrospinels and fayalite led to increasing Al2O3 and SiO2 in the melt whence sekaninaite and tridymite crystallized as later phases. The residual melt progressively acquired a more silicic-aluminous composition, rich in K2O, CaO, and P2O5, and became quenched to glass at >1080–1090 °C, when temperature dropped abruptly, possibly, by roof collapse or opening of large cracks, as it usually happens in underground coal fires.  相似文献   

7.
Mafic igneous rocks are widespread in the Nevado-Filábride Complex, the lowermost metamorphic unit of the internal zones of the Betic Cordilleras. They form intrusive, small, discontinuous bodies, predominantly dikes with subordinate small lava flows. The entire complex underwent alpine compressional metamorphism during the Paleogene continental collision, resulting in eclogites and blueschists in the mafic bodies and high-pressure assemblages in the intruded metasediments. Locally, weakly metamorphosed or completely unmetamorphosed igneous rocks with the same textural features occur as patches surrounded by eclogitized igneous rocks. The bulk rock chemistry of unmetamorphosed and completely metamorphosed mafic igneous rocks is consistent with an alkaline to transitional tholeiitic magmatism with typical within-plate geochemical characteristics. All but a few samples are nepheline normative and display REE and trace element characteristics typical of continental, rift-related magmatism. This conclusion is strongly supported by the mineral chemistry of the major constituents, in particular the calcic Ti-rich character of clinopyroxene, the lack of orthopyroxene, and the occurrence of kaersutitic amphibole. Incompatible trace element abundances and Sr and Nd isotopes support the provenance of these magmas from a variably metasomatized previously depleted sub-continental lithospheric mantle source. Received: 5 July 1999 / Accepted: 28 February 2000  相似文献   

8.
The biotite isograd in pelitic schists of the Waterville Formationinvolved reaction of muscovite + ankerite + rutile + pyrite+graphite + siderite or calcite to form biotite + plagioclase+ ilmenite. There was no single reaction in all pelites; eachrock experienced a unique reaction depending on the mineralogyand proportions of minerals in the chlorite-zone equivalentfrom which it evolved. Quartz, chlorite, and pyrrhotite werereactants in some rocks and products in others. All inferredbiotite-forming reactions involved decarbonation and desulfidation;some were dehydration reactions and others were hydration reactions.P-T conditions at the biotite isograd were near 3500 bars and400 °C. C-O-H-S fluids in equilibrium with the pelitic rockswere close to binary CO2-H2O mixtures with XCO2 = 0.02–0.04.During the biotite-forming reaction, pelitic rocks (a) decreasedby 2–5 percent in volume, (b) performed – (4–11)kcal/liter P-V work on their surroundings, (c) absorbed 38–85kcal/liter heat from their surroundings, and (d) were infiltratedby at least 0.9–2.2 rock volumes H2O fluid. The biotite isograd sharply marks the limit of a decarbonationfront that passed through the terrane during regional metamorphism.Decarbonation converted meta-shales with 6–10 per centcarbonate to carbonate-free pelitic schists. One essential causeof the decarbonation event was pervasive infiltration of theterrane by at least 1–2 rock volumes H2O fluid early inthe metamorphic event under P-T conditions of the biotite isograd.Average shale contains 4–13 per cent siderite, ankerite,and/or calcite, but average pelitic schist is devoid of carbonateminerals. If the Waterville Formation serves as a general modelfor the metamorphism of pelitic rocks, it is likely that worldwidemany pelitic schists developed by decarbonation of shale caused,in part, by pervasive infiltration of metamorphic terranes byseveral rock volumes of aqueous fluid during an early stageof the metamorphic event.  相似文献   

9.
Zusammenfassung Die Untersuchung von Ankeritgesteinen des Steirischen Erberges mit der Mikrosonde und mit dem Auflichtmikroskop hat gezeigt, daß man im wesentlichen zwischen drei Ankeritgesteinstypen zu unterscheiden hat: 1. Feinkörnige Fe-arme Ankeritgesteine mit stark wechselndem Mg/Fe-Verhältnis der einzelnen Ankeritkörner, 2. Feinkörnige Fe-reiche Ankeritgesteine einheitlicher Zusammensetzung 3. Überwiegend gangförmig auftretende, spätige Fe-reiche Ankeritgesteine einheitlicher Zusammensetzung. Innerhalb eines stratigraphisch gleichwertigen, tektonisch ungestörten Gesteinshorizontes liegen die feinkörnigen Fe-reichen Ankeritgesteine entweder zwischen feinkörnigen Fe-armen Ankeritgesteinen und Sideriten oder zwischen Kalken und Sideriten. Die spätigen Fe-reichen Ankeritgesteine treten sowohl zwischen den feinkörnigen Fe-reichen Ankeritgesteinen gesteinen und Sideriten, als auch gang-und nesterförmig innerhalb dieser Gesteine auf. Sie dringen auch querschlägig in die Basisbreccien ein, womit Permoskyth als untere Grenze ihres Bildungszeitraumes angegeben werden kann.Die stark wechselnde Zusammensetzung einzelner Ankeritkörner in den feinkörnigen Fe-armen Ankeritgesteinen wird als Hinweis auf eine primär-sedimentäre Bildung angesehen. Die feinkörnigen Fe-reichen Ankeritgesteine stellen Reaktionsprodukte sedimentär gebildeter Kalke, Ankerit-und Sideritgesteine während der variszischen Orogenese dar; die Bildung der spätigen Fe-reichen Ankeritgesteine erfolgt während der alpidischen Orogenese. Bei Verwendung der Fe-reichen Ankerite des Erzberges als Geothermometer ergeben sich Modell-Metamorphosetemperaturen von etwa 400°C bei Drucken von 2–3 kbar. Die zu Vergleichszwecken untersuchten Ankeritgesteine aus Vorkommen der Gollrader Bucht und des östlichen Endes der Grauwackenzone lassen Bildungstemperaturen von etwa 350°C erwarten.
Ankerite rocks and the genesis of siderite deposits in the Eastern Grauwacken zone, Austria
Summary Investigations of ankerite rocks from the Steirische Erzberg region by microprobe and ore microscopy have revealed three main ankerite rock types: 1. fine grained ankerite rock with low Fe content and variable Mg/Fe ratio in the individual grains; 2. fine-grained Fe-rich ankerite rock with uniform composition; 3. sparry Fe-rich ankerite rock of uniform composition occurring essentially as veins. Within a stratigraphically uniform, tectonically undisturbed bed the fine-grained Fe-rich ankerite rocks lie either between fine-grained Fe-poor ankerite rocks and siderites or between limestones and siderites. The sparry Fe-rich ankerite rocks occur between the fine-grained Fe-rich ankerite rocks and siderites as well as in veins and nodules within these rocks. They also cut into and through the basal breccia; this suggests a Permosky thian age as the lower limit for their formation. The widely varying composition of individual ankerite grains in the fine-grained Fe-poor ankerite rocks is regraded as an indication of a primary sedimentary formation. The fine-grained Fe-rich ankerite rocks represent reaction products of sedimentary limestone, ankerite and siderite rocks during the Variscan orogenesis. The formation of the sparry Fe-rich ankerite rocks occurred during the alpine orogenic phase.Application of Fe-rich ankerites as a geothermometer results in model metamorphic temperatures of about 400°C at pressures from 2 to 3 kbar. The ankerite rocks from the Gollrader Bucht and the Eastern end of the Grauwacken zone which were examined for purposes of comparison lead one to expect formation temperatures of about 350°C.


Mit 5 Abbildungen  相似文献   

10.
The complexes of metamorphic rocks that take part in the tectonic structure of the South Tien Shan are mostly confined to the cores of large synforms and occupy high structural position therein. Problems of their age, origin, metamorphic conditions, and relationships with the adjacent unmetamorphosed Paleozoic sequences have remained debatable throughout the history of geological investigations. The results of detailed studies of the Kyrgyz-Ata Synform, a typical structure of the Turkestan-Alay Zone in the South Tien Shan, are reported in this paper. The metamorphic rocks of the Kan Group participate in the structure of this synform. On the basis of the study of structural assemblages and the kinematic analysis, it is concluded that the multistage evolution of this tectonic unit proceeded under transpressive conditions of volcanic trough “crushing.” The detailed study of rock alteration in the contact zone between the Kan Group and the Middle Devonian basic volcanic rocks allowed us to suggest that the metamorphic Kan Group is not a self-dependent stratigraphic unit but represents an infrastructure (a metamorphosed analogue of the volcanic sequence and underlying rocks) displaced tectonically over its own suprastructure.  相似文献   

11.
The Hercynian mercury mineralization of Las Cuevas is hosted by a highly folded and sheared sequence of basalts, intrusive breccias, slates, psamitic rocks and quartzites. The mineral paragenesis is simple and consists of cinnabar, native mercury and pyrite. Hydrothermal alteration can be divided into `proximal' and `distal' with respect to the mineralized bodies. The proximal alteration (≤1.3 m wide) consists of quartz-pyrophyllite-kaolinite, quartz-pyrophyllite-(kaolinite)-(illite), and quartz-illite-(pyrophyllite)-(kaolinite). The distal alteration (∼100 m wide) consists of (quartz)-illite-chlorite-(pyrophyllite), or rectorite-(chlorite). These assemblages overprint an earlier, regional alteration consisting of quartz-chlorite-albite-carbonates (±ankerite, ±siderite, ±magnesite, ±calcite). The mercury deposit of Las Cuevas can be regarded as an unusual combination of mercury deposition and advanced argillic alteration within a relatively deep environment (≥1.8 km). Received: 3 February 1998 / Accepted: 8 June 1998  相似文献   

12.
The Gemericum is a segment of the Variscan orogen subsequently deformed by the Alpine–Carpathian orogeny. The unit contains abundant siderite–sulphide and quartz–antimony veins together with stratabound siderite replacement deposits in limestones and stratiform sulphide mineralization in volcano-sedimentary sequences. The siderite–sulphide veins and siderite replacement deposits of the Gemericum represent one of the largest accumulations of siderite in the world, with about 160 million tonnes of mineable FeCO3. More than 1200 steeply dipping hydrothermal veins are arranged in a regional tectonic and compositional pattern, reflecting the distribution of regional metamorphic zones. Siderite–sulphide veins are typically contained in low-grade (chlorite zone) sedimentary, volcano-sedimentary or volcanic Lower and Upper Paleozoic rocks. Quartz–antimony veins are hosted by higher-grade units (biotite zone). Siderite–sulphide veins are dominated by early siderite followed by a complex set of stages, including quartz–sulphide (chalcopyrite, tetrahedrite), barite, tourmaline–quartz, and sulphide-remobilization stages. The temporal evolution of these stages is difficult to study because of the widespread and repeated tectonic processes, within-vein replacement and recrystallization. Siderite–sulphide veins show considerable vertical (up to 1200 m) and lateral (up to 15 km) extent, and a thickness typically reaching several metres. Carbonate-replacement siderite deposits of the Gemericum are hosted by a Silurian limestone belt and are similar to stratabound siderite deposits of the Eastern Alps (e.g., Erzberg, Austria).Based on a review of geological, petrological and geochronological data for the Gemericum, and extensive stable and radiogenic isotope data and fluid inclusion data on hydrothermal minerals, the siderite–sulphide veins and siderite replacement deposits are classified as metamorphogenic in a broad sense. The deposits were formed during several stages of regional crustal-scale fluid flow. Isotope (S, C, Sr, Pb) fingerprinting identifies the metamorphosed rock complexes of the Gemericum as a source of most components of hydrothermal fluids. Fluid inclusion and stable isotope data evidence the participation of several contrasting fluid types, and the existence of contrasting PT conditions during vein evolution. A high-δ18O, medium- to high-salinity, H2O-type fluid is the most important component during siderite deposition, whereas H2O–CO2-type fluid inclusion containing dense liquid CO2 and corresponding to minimal pressures between 1 and 3 kbar were found in a younger tourmaline–quartz stage. Younger quartz–ankerite(±siderite)–sulphide stages are characterized by high-salinity (17 to 35 wt.% NaCl equivalent) and low-temperature (Th=90 to 180 °C) H2O-type fluids.The vein deposits are interpreted as a result of multistage hydrothermal circulation, with Variscan and Alpine mineralization phases. Based on available indirect data, the most important mineralization phase was related to regional fluid flow during the uplift of a Variscan metamorphic core complex, producing siderite–sulphide (±barite) mineralization, while tourmaline–quartz stage and sulphide remobilization stages are related to Alpine processes. Two phases of vein evolution are evident from two groups of 87Sr/86Sr isotope ratios of Sr-rich, Rb-poor hydrothermal minerals: 0.71042–0.71541 in older barite and 0.7190–0.7220 in late-stage celestine and strontianite.  相似文献   

13.
The Degdekan and Gol’tsovsky gold-quartz deposits are located in the southeastern Yana-Kolyma gold belt. The orebodies occur as quartz veins hosted in metaterrigenous rocks and cut by postmineral basic-intermediate dikes. It was established that metamorphism of sulfides and gangue quartz was restricted to a few centimeters off the dike contact. According to sulfide geothermometers, the metamorphic temperatures close to the contact of dikes attained 700°C at the Degdekan deposit and were no higher than 491°C at the Gol’tsovsky deposit. The formation of the forbidden assemblage of quartz and loellingite and its fine-grained texture indicate that the thermal effect on the Degdekan ore was short-term. The prolonged heating of the ore at the Gol’tsovsky deposit gave rise to the aggradation recrystallization of quartz and the formation of equilibrium sulfide aggregates that show only insignificant differences in composition from the primary phases. The average homogenization temperature of primary and pseudosecondary fluid inclusions is 206 ± 40°C in the unmetamorphosed veins and 257 ± 33°C in the metamorphosed veins. The salinity of fluids in the primary and pseudosecondary inclusions in quartz veins of both types varies from 0.5 to 14.0 wt % NaCl equiv. The melting temperature of liquid CO2 in the carbon dioxide inclusions, ranging from ?57.0 to ?60.8°C, suggests an admixture of CH4 and/or N2. The unmetamorphosed quartz veins were formed at a fluid pressure varying from 0.7 to 1.3 kbar, while quartz veins at the contact with dikes crystallized at a pressure of 0.8–1.5 kbar. The results of gas chromatography showed the presence of CO2 and H2O, as well as N2 and CH4. The average bulk of volatiles contained in the fluid inclusions in quartz from the metamorphosed veins is 1.5–2 times lower than in the unmetamorphosed veins; this proportion is consistent with the occurrence of decrepitated gas inclusions in the heated quartz.  相似文献   

14.
A composite intrusive igneous complex in the central mountainrange of Queen Maud Land (Thor Range), Antarctica, displayscharacteristic features of anorogenic granites. A suite of massiveintrusives and various sets of dykes and satellite intrusionsare ferroan, alkalic to alkali–calcic, and weakly peraluminous.An early set of plutons consists of charnockitic alkali-granites;a later group of plutons comprises fayalite Qtz-syenites. Coarsemesoperthite is the dominant mineral in all rocks, quartz isabundant and plagioclase is a minor mineral. Olivine (fayalite)is the characteristic mafic mineral, but subcalcic augite andoccasionally pigeonite or orthopyroxene are present. In mostsamples, amphibole is the dominant mafic mineral and its compositionis close to end-member hastingsite. It contains high concentrationsof F and Cl. Some samples contain igneous fluorite. Thermobarometrysuggests a temperature of 900 ± 25°C and a pressureof 0·4 ± 0·1 GPa for the crystallizationconditions of the pyroxene–olivine assemblages. The solidustemperature of 800–850°C for both suites of plutonicrocks is typical of water-deficient granitic melts. The estimatedlow water activity of 0·3–0·5 at solidusconditions is consistent with the high halogen content of thebulk-rocks and their constituent minerals. In the absence ofan aqueous fluid, the halogens remained in the minerals at thesolidus. Oxygen fugacity stayed below QFM in all igneous rocksabove solidus. This is typical of melts derived from partialmelting of mafic source rocks. The igneous rocks were locallyaffected by at least three distinct episodes of hydration. Asthe melt approached solidus conditions, fayalite and pyroxenewere locally transformed into hastingsite as a result of increasingfugacity of volatile components. Fayalite-free and fayalite-bearingigneous rocks are arranged in banded structures. Subsolidushydration locally modified the igneous rocks and transformedpyroxene- and fayalite-bearing granites into biotite-granitesand hornblende-granites in which all evidence of former high-Thistory was erased. This local hydration of igneous rocks occurredin response to uptake of H2O that had been given off by gneissicxenoliths as a result of progressing, continuous, dehydrationreactions. The reactions in the gneiss xenoliths were drivenby contact metamorphism. This exchange of H2O between igneousand metamorphic rocks occurred in a fluid-absent regime at temperaturesof about 750°C. Late reaction veins formed by hydraulicfracturing of the plutonic rocks and indicate the presence ofa low-density fluid phase at amphibolite facies conditions. KEY WORDS: anorogenic granite; fayalite; hastingsite; fluid recycling; Antarctica  相似文献   

15.
Mineral assemblages in pegmatite samples from Kolsva, Swedenand Marikov, Czechoslovakia show that chrysoberyl is alwaysaccompanied by quartz, and is a breakdown product of primarypegmatitic beryl. Textures and the mineral-forming process forthe Kolsva pegmatite are explained by the reactions beryl +K-feldspar + H+ = chrysoberyl + quartz + SiO2, aq + K+ + H2Oor alternatively beryl —K—feldspar + H2O = chrysoberyl+ quartz + melt. Mineral assemblages from mica-rich parts ofthe pegmatite include sillimanite—K—feldspar, muscovite—K—feldspar—sillimanite,and annite—magnetite—spinel—sillimanite—garnet.Details about the composition and the textural relationshipsof these minerals are given; they indicate a post-pegmatiticmetamorphic event at P—T conditions near to the anatecticregime. The samples from Marikov show textures, which are explainedby the reactions beryl + albite + H+ = chrysoberyl + quartz+ Na+ + H2O or alternatively beryl + albite + H2O = chrysoberyl+ quartz + melt. Breakdown of muscovite produces sillimaniteaccording to the reactions beryl + albite + muscovite + H+ =chrysoberyl + quartz + sillimanite + Na+ + K+ + H2O or alternativelyberyl + albite + muscovite + H2O = chrysoberyl + quartz + sillimanite+ melt. Similar reaction textures and mineral assemblages were foundin other chrysoberyl-bearing pegmatites (Maroankora, Madagascar;Helsinki, Finland; Haddam, Greenfield, Greenwood, U.S.A.). Hydrothermal experiments located the reaction beryl + alkalifeldspar + H2O = chrysoberyl + phenakite + melt at P—Tconditions between the K—feldspar—quartz—H2Osolidus and the K—feldspar—albite—quartz-H2Osolidus. It is concluded that the formation of Al-rich minerals likechrysoberyl and sillimanite in pegmatites is due to a post-pegmatiticevent at high P—T conditions. The question as to whichof the alternative set of reactions is more likely, the ionicequilibria or the anatectic chrysoberyl formation, must be leftopen. The previous hypothesis of a desilification of a pegmatitewhich intruded into SiO2-poor country rocks, or of the assimilationof Al2O3-rich country rocks, cannot explain the mineral assemblagesof the two pegmatites.  相似文献   

16.
In the eastern part of the Strandja Massif constituting the east end of the Rhodope Massif, the amphibolite facies basement rocks intruded by Permian metagranites are juxtaposed against the greenschist facies cover metasediments of Triassic-Middle Jurassic protolith age. The distinct metamorphic break between the basement and cover rocks requires a missing metamorphic section. The boundary between the two groups of rocks is a ductile to brittle extensional shear zone with kinematic indicators exhibiting a top to the E/NE shear sense. Footwall rocks are cut by weakly metamorphosed and foliated granite bodies which are clearly distinguished from the Permian metagranites by their degree of deformation, cross-cutting relations and syn-tectonic/kinematic character. Also, hangingwall rocks were intruded by unmetamorphosed and weakly foliated leucogranites. 40Ar/39Ar data indicate that the ductile deformation from 156.5 to 143.2 Ma (Middle Oxfordian-Earliest Berriasian) developed during the syn-tectonic plutonism in the footwall. Deformation, and gradual/slower cooling-exhumation survived until to 123 Ma (Barremian). The mylonitic and brittle deformation in the detachment zone developed during Oxfordian-Earliest Berriasian time (155.7–142.6 Ma) and Early Valanginian-Aptian time (136–118.7 Ma), respectively. Our new field mapping and first 40Ar/39Ar ages demonstrate the existence of an extensional core complex of Late Jurassic-Early Cretaceous age not previously described in the Rhodope/Strandja massifs.  相似文献   

17.
华北克拉通在新太古代末期发生克拉通化,形成了现今规模的古陆,大量的太古宙岩石均经历了~2500Ma左右的区域高级变质作用(高角闪岩相-麻粒岩相)。而华北克拉通北部冀北地区出露一套中低级变质(绿片岩相-角闪岩相)的火山-沉积岩系,主要包括胡麻营地区红旗营子表壳岩和大阴山地区单塔子表壳岩中变质程度较低的部分。胡麻营地区红旗营子表壳岩系主要岩石组合为变基性火山岩、绿帘角闪岩、斜长角闪岩、含石榴石斜长角闪岩、角闪斜长片麻岩、黑云斜长片麻岩、黑云角闪斜长片麻岩、黑云二长片麻岩、石英片岩、磁铁石英岩等,SIMS锆石U-Pb定年结果表明斜长角闪岩形成于2486±18Ma(MSWD=1.4),而黑云斜长片麻岩形成于2507±37Ma(MSWD=2.0)。大阴山地区单塔子中低级变质表壳岩系主要由浅变质火山岩、云母石英片岩、斜长角闪岩、磁铁石英岩和大理岩等组成,SHRIMP锆石U-Pb定年结果显示,浅变质火山岩中的变玄武岩形成于2490±19Ma(MSWD=2.0),而变英安岩形成于2502±8Ma(MSWD=0.83)。因此,冀北中低级变质的表壳岩系主要形成于新太古代末期,形成年龄为2507~2486Ma;结合冀东青龙地区新太古代末期(2511~2503Ma)的浅变质火山-沉积岩系(青龙表壳岩),我们认为新太古代末期,中低级变质表壳岩系广泛分布于华北克拉通的核部和边缘地区,此套岩系覆盖在太古宙高级变质杂岩之上,代表华北克拉通化之后的稳定盖层,是克拉通化的主要标志之一。  相似文献   

18.
Iron-formation was deposited as a distal facies of ferruginous carbonate turbidites in an open shelf environment in front of a shallow-water carbonate platform at the time of deposition of the Campbellrand carbonate sequence. A subsequent transgression resulted in the deposition of open shelf iron-formation on top of the Campbellrand carbonate platform. Progradational sedimentation coupled with shoaling followed, and an iron-formation sequence represented by the Kuruman and Griquatown Iron-formations was deposited. This sequence consists from the base upwards of stacked open-shelf cycles of altered volcanic ash stilpnomelane lutite beds and autochthonous banded ferhythmite units; toe-of-slope greenalite—siderite rhythmites; platform slope greenalite—siderite rhythmites with grainflow bands; platform edge sideritic orthochemical and allochemical iron-formations; epeiric sea orthochemical and allochemical sideritic, hematitic and greenalitic iron-formations; supratidal disclutites and lacustrine banded greenalite lutite. Landwards, the lacustrine felutites were followed by deltaic chloritic claystone, siltstone and quartz wacke of the Koegas Subgroup.Autochthonous ferhythmites of the Kuruman Iron-formation reach a maximum development in a basin near Prieska, whereas orthochemical and allochemical units are more abundant on the Kaapvaal craton. Iron mineral and chert microbanding in the ferhythmites is attributed to seasonal changes in Eh and pH in the depository and may be related to biological activity. Chert mesobanding in the iron-formations is essentially of an early diagenetic origin.  相似文献   

19.
黔西南和黔东南是贵州的两个主要产金地区,大部分金矿都产于浊积岩中。但黔西南的金矿主要是含金蚀变岩型(或称卡林型、微细浸染型),以不可见金为主;黔东南的金矿却是含金石英脉型,以明金为主。这两种金矿都产在造山带,赋矿围岩是浊积岩,区内岩浆侵入作用不显著,成矿受背斜与断裂控制,成矿温度不高,矿石物质成分基本一致。研究表明,产生不同类型矿化的原因主要在于:黔东南地区的容矿岩石是浅变质的硅质碎屑岩,碳酸盐矿物很少;而黔西南地区是未变质的富钙硅质碎屑岩,碳酸盐矿物多。前者形成石英脉型金矿床,后者形成蚀变岩型金矿床。  相似文献   

20.
The Huilvshan gold deposit in the west Junggar (Xinjiang, China) is hosted in chloritized basalts, chlorite–siderite-altered basalts, and quartz–siderite rocks. Our study demonstrated that all these rocks were derived by alteration of basalts in a shear zone. The orebodies, consisting of quartz-sulfide veins and disseminated sulfides, formed in five stages: quartz–muscovite (I), disseminated sulfides (II), quartz–ankerite-sulfide (III), quartz–calcite-sulfide (IV), and quartz–calcite (V). Auriferous minerals are native gold in stage III and electrum in stage IV. During alteration of basalts in the shear zone, ore-forming elements were released from basalts to ore-forming fluid. Compared with fresh basalts, sulfide-bearing chloritized basalts contain much higher Sr, Ba, P, La, Ce, U, Mn, Ni, Zn, As, Ag, and Au contents. Phase analysis of the As–Cu–Fe–S–O system with the SUPCRT92 software package indicates that a decrease of the aH2S value, caused by the fluid–rock reactions and crystallization of sulfides, induced gold precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号