首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the Hubble Ultra Deep Field to study the galaxy luminosity–size  ( M – R e )  distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the   M – R e   plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since   z ∼ 0.7  . Specifically, we demonstrate that the mean, rest-frame B -band  〈μ〉 e   for galaxies in a sample spanning 8 mag in luminosity between   M B =−22  and −14 mag increases by ∼1.0 mag arcsec−2 from   z ∼ 0.1  to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.  相似文献   

2.
We discuss the properties of 137 cataclysmic variables (CVs) which are included in the Sloan Digital Sky Survey (SDSS) spectroscopic data base, and for which accurate orbital periods have been measured. 92 of these systems are new discoveries from SDSS and were followed-up in more detail over the past few years. 45 systems were previously identified as CVs because of the detection of optical outbursts and/or X-ray emission, and subsequently re-identified from the SDSS spectroscopy. The period distribution of the SDSS CVs differs dramatically from that of all the previously known CVs, in particular it contains a significant accumulation of systems in the orbital period range 80–86 min. We identify this feature as the elusive 'period minimum spike' predicted by CV population models, which resolves a long-standing discrepancy between compact binary evolution theory and observations. We show that this spike is almost entirely due to the large number of CVs with very low accretion activity identified by SDSS. The optical spectra of these systems are dominated by emission from the white dwarf photosphere, and display little or no spectroscopic signature from the donor stars, suggesting very low mass companion stars. We determine the average absolute magnitude of these low-luminosity CVs at the period minimum to be  〈 Mg 〉= 11.6 ± 0.7  . Comparison of the SDSS CV sample to the CVs found in the Hamburg Quasar Survey and the Palomar Green Survey suggests that the depth of SDSS is the key ingredient resulting in the discovery of a large number of intrinsically faint short-period systems.  相似文献   

3.
We present the results of optical spectroscopy of two flux-density-limited samples of radio sources selected at frequencies of 38 and 151 MHz in the same region around the North Ecliptic Cap, the 8C-NEC and 7C- iii samples respectively. Both samples are selected at flux density levels ≈20 times fainter than samples based on the 3C catalogue. They are amongst the first low-frequency selected samples with no spectral or angular size selection for which almost complete redshift information has been obtained, and contain many of the lowest-luminosity z >2 radio galaxies so far discovered. They will therefore provide a valuable resource for understanding the cosmic evolution of radio sources and their hosts and environments. The 151-MHz 7C- iii sample is selected to have S 151≥0.5 Jy and is the more spectroscopically complete; out of 54 radio sources fairly reliable redshifts have been obtained for 44 objects. The 8C sample has a flux limit of S 38≥1.3 Jy and contains 58 sources of which 46 have fairly reliable redshifts. We discuss possible biases in the observed redshift distribution, and some interesting individual objects, including a number of cases of probable gravitational lensing. Using the 8C-NEC and 7C- iii samples in conjunction, we form the first sample selected on low-frequency flux in the rest-frame of the source, rather than the usual selection on flux density in the observed frame. This allows us to remove the bias associated with an increasing rest-frame selection frequency with redshift. We investigate the difference this selection makes to correlations of radio source properties with redshift and luminosity by comparing the results from traditional flux-density selection with our new method. We show in particular that flux-density-based selection leads to an overestimate of the steepness of the correlation of radio source size with redshift.  相似文献   

4.
We critically re-examine the available data on the spectral types, masses and radii of the secondary stars in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs), using the new catalogue of Ritter &38; Kolb as a starting point. We find there are 55 reliable spectral type determinations and only 14 reliable mass determinations of CV secondary stars (10 and 5, respectively, in the case of LMXBs). We derive new spectral type–period, mass–radius, mass–period and radius–period relations, and compare them with theoretical predictions. We find that CV secondary stars with orbital periods shorter than 7–8 h are, as a group, indistinguishable from main-sequence stars in detached binaries. We find that it is not valid, however, to estimate the mass from the spectral type of the secondary star in CVs or LMXBs. We find that LMXB secondary stars show some evidence for evolution, with secondary stars which are slightly too large for their mass. We show how the masses and radii of the secondary stars in CVs can be used to test the validity of the disrupted magnetic braking model of CV evolution, but we find that the currently available data are not sufficiently accurate or numerous to allow such an analysis. As well as considering secondary star masses, we also discuss the masses of the white dwarfs in CVs, and find mean values of M  = 0.69 ± 0.13 M below the period gap, and M  = 0.80 ± 0.22 M above the period gap.  相似文献   

5.
The AM Canum Venaticorum (AM CVn) stars are rare interacting white dwarf binaries, whose formation and evolution are still poorly known. The Sloan Digital Sky Survey provides, for the first time, a sample of six AM CVn stars (out of a total population of 18) that are sufficiently homogeneous that we can start to study the population in some detail.
We use the Sloan sample to 'calibrate' theoretical population synthesis models for the space density of AM CVn stars. We consider optimistic and pessimistic models for different theoretical formation channels, which yield predictions for the local space density that are more than two orders of magnitude apart. When calibrated with the observations, all models give a local space density  ρ0= 1–3 × 10−6 pc−3  , which is lower than expected.
We discuss the implications for the formation of AM CVn stars, and conclude that at least one of the dominant formation channels (the double-degenerate channel) has to be suppressed relative to the optimistic models. In the framework of the current models this suggests that the mass transfer between white dwarfs usually cannot be stabilized. We furthermore discuss evolutionary effects that have so far not been considered in population synthesis models, but which could be of influence for the observed population. We finish by remarking that, with our lower space density, the expected number of Galactic AM CVn stars resolvable by gravitational-wave detectors like the Laser Interferometer Space Antenna ( LISA ) should be lowered from current estimates, to about 1000 for a mission duration of 1 yr.  相似文献   

6.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

7.
We report on the properties of 71 known cataclysmic variables (CVs) in photometric Hα emission-line surveys. Our study is motivated by the fact that the Isaac Newton Telescope (INT) Photometric Hα Survey of the northern galactic plane (IPHAS) will soon provide r ',  i ' and narrow-band Hα measurements down to   r '≃ 20  for all northern objects between  − 5° < b < +5°  . IPHAS thus provides a unique resource, both for studying the emission-line properties of known CVs and for constructing a new CV sample selected solely on the basis of Hα excess. Our goal here is to carry out the first task and prepare the way for the second. In order to achieve this, we analyse data on 19 CVs already contained in the IPHAS data base and supplement this with identical observations of 52 CVs outside the galactic plane.
Our key results are as follows: (i) the recovery rate of known CVs as Hα emitters in a survey like IPHAS is ≃70 per cent; (ii) of the ≃30 per cent of CVs which were not recovered ≃75 per cent were clearly detected but did not exhibit a significant Hα excess at the time of our observations; (iii) the recovery rate depends only weakly on CV type; (iv) the recovery rate depends only weakly on orbital period; (v) short-period dwarf novae tend to have the strongest Hα lines. These results imply that photometric emission-line searches provide an efficient way of constructing CV samples that are not biased against detection of intrinsically faint, short-period systems.  相似文献   

8.
We use the ROSAT North Ecliptic Pole (NEP) survey to construct a small, but purely X-ray flux-limited sample of cataclysmic variable stars (CVs). The sample includes only four systems, two of which (RX J1715.6+6856 and RX J1831.7+6511) are new discoveries. We present time-resolved spectroscopy of the new CVs and measure orbital periods of 1.64 ± 0.02 and 4.01 ± 0.03 h for RX J1715.6+6856 and RX J1831.7+6511, respectively. We also estimate distances for all the CVs in our sample, based mainly on their apparent brightness in the infrared. The space density of the CV population represented by our small sample is  1.1+2.3−0.7× 10−5 pc−3  . We can also place upper limits on the space density of any subpopulation of CVs too faint to be included in the NEP survey. In particular, we show that if the overall space density of CVs is as high as  2 × 10−4 pc−3  (as has been predicted theoretically), the vast majority of CVs must be fainter than   L X≃ 2 × 1029 erg s−1  .  相似文献   

9.
Several observational works have attempted to isolate the effects of galaxy interactions by comparing galaxies in pairs with isolated galaxies. However, different authors have proposed different ways to build these so-called control samples (CS). By using mock galaxy catalogues of the Sloan Digital Sky Survey Data Release 4 buildup from the Millennium Simulation, we explore how the way of building a CS might introduce biases which could affect the interpretation of results. We make use of the fact that the physics of interactions are not included in the semi-analytic model, to infer that any difference between the mock control and pair samples can be ascribed to selection biases. Thus, we find that galaxies in pairs artificially tend to be older and more bulge dominated, and to have less cold gas and different metallicities than their isolated counterparts. Also because of a biased selection, galaxies in pairs tend to live in higher density environments and in haloes of larger masses. We find that imposing constraints on redshift, stellar masses and local densities diminishes the selection biases by  ≈70 per cent  . Based on these findings, we suggest observers how to build a unique and unbiased CS in order to reveal the effect of galaxy interactions.  相似文献   

10.
We investigate why the spectral type of most cataclysmic variable (CV) secondaries is significantly later than that of a zero-age main-sequence (ZAMS) star with the same mean density. Using improved stellar input physics, tested against observations of low-mass stars at the bottom of the main sequence, we calculate the secular evolution of CVs with low-mass donors. We consider sequences with different mass transfer rates and with a different degree of nuclear evolution of the donor prior to mass transfer.
Systems near the upper edge of the gap ( P ∼3–6 h) can be reproduced by models with a wide range of mass transfer rates from 1.5×10−9 M yr−1 to 10−8 M yr−1. Evolutionary sequences with a small transfer rate and donors that are substantially evolved off the ZAMS (central hydrogen content 0.05–0.5) reproduce CVs with late spectral types above P ≳6 h. Systems with the most discrepant (late) spectral type should have the smallest donor mass at any given P .
Consistency with the period gap suggests that the mass transfer rate increases with decreasing donor mass for evolved sequences above the period gap. In this case, a single-parameter family of sequences with varying X c and increasing mass transfer rate reproduces the full range of observed spectral types. This would imply that CVs with such evolved secondaries dominate the CV population.  相似文献   

11.
Using improved, up-to-date stellar input physics tested against observations of low-mass stars and brown dwarfs, we calculate the secular evolution of low-mass donor cataclysmic variables (CVs), including those that form with a brown-dwarf donor. Our models confirm the mismatch between the calculated minimum period ( P min70 min) and the observed short-period cut-off (80 min) in the CV period histogram. We find that tidal and rotational corrections applied to the one-dimensional stellar structure equations have no significant effect on the period minimum. Theoretical period distributions synthesized from our model sequences always show an accumulation of systems at the minimum period, a feature absent from the observed distribution. We suggest that non-magnetic CVs become unobservable as they are effectively trapped in permanent quiescence before they reach P min, and that small-number statistics may hide the period spike for magnetic CVs.  相似文献   

12.
We present the results of a search for dwarf novae (DNe) in globular clusters (GCs). It is based on the largest available homogeneous sample of observations, in terms of the time-span, number of observations and number of clusters. It includes 16 Galactic GCs and yielded two new certain DNe: M55-CV1 and M22-CV2. All previously known systems located in our fields were recovered, too. We surveyed M4, M5, M10, M12, M22, M30, M55, NGC 288, NGC 362, NGC 2808, NGC 3201, NGC 4372, NGC 6362, NGC 6752, ω Centauri (NGC 5139) and 47 Tucanae (NGC 104). The discovery of two DNe, namely M55-CV1 and M22-CV2, was already reported by Kaluzny et al. and Pietrukowicz et al., respectively. In the remaining 14 GCs, we found no certain new DNe. Our result raises the total number of known DNe in the Galactic GCs to 12 DNe, distributed among seven clusters. Our survey recovered all three already known erupting cataclysmic variables (CVs) located in our fields, namely M5-V101, M22-CV1, and V4 in the foreground of M30. To assess the efficiency of the survey, we analysed images with inserted artificial stars mimicking outbursts of the prototype DNe SS Cygni and U Geminorum. Depending on the conditions, we recovered between 16–100 per cent of these artificial stars. The efficiency seems to be predominantly affected by duty cycle/time-sampling and much less by distance/magnitude. Except for saturated tiny collapsed cores of M30, NGC 362 and NGC 6752 (and also the dense core of NGC 2808), crowding effects in the V band were avoided by our image subtraction technique augmented with auxiliary unsaturated B -band images. Our results clearly demonstrate that in GCs common types of DNe are very rare indeed. However, great care must be taken before these conclusions can be extended to the CV population in GCs.  相似文献   

13.
The current Swift sample of gamma-ray bursts (GRBs) with measured redshifts allows us to test the assumption that GRBs trace star formation in the Universe. Some authors have claimed that the rate of GRBs increases with cosmic redshift faster than the star formation rate, whose cause is not yet known. In this paper, I investigate the possibility of interpreting the observed discrepancy between the GRB rate history and the star formation rate history using cosmic metallicity evolution. I am motivated by the observation that cosmic metallicity evolves with redshift and GRBs tend to occur in low-metallicity galaxies. First, I derive a star formation history up to redshift   z = 7.4  from an updated sample of star formation rate densities. This is obtained by adding the new ultraviolet measurements of Bouwens et al. and the new ultraviolet and infrared measurements of Reddy et al. to the existing sample compiled by Hopkins & Beacom. Then, adopting a simple model for the relation between GRB production and the cosmic metallicity history as proposed by Langer & Norman, I show that the observed redshift distribution of the Swift GRBs can be reproduced with good accuracy. Although the results are limited by the small size of the GRB sample and the poorly understood selection biases in detection and localization of GRBs and in redshift determination, they suggest that GRBs trace both star formation and metallicity evolution. If the star formation history can be accurately measured with other approaches, which is presumably achievable in the near future, it will be possible to determine the cosmic metallicity evolution using the study of the redshift distribution of GRBs.  相似文献   

14.
We present the results of a photometric survey for variable stars in the central region of the nearby globular cluster NGC 6397. Time-series photometry was obtained for 30 variable objects. The sample includes 12 new objects, of which six show periodic light curves and two are eclipsing binaries of unknown period. Six variables possess certain and three possess likely X-ray counterparts detected with the Chandra observatory. Among them, four are cataclysmic variables and one is a foreground eclipsing binary. The cataclysmic variable CV2 exhibited a likely dwarf nova type outburst in 2003 May. The cataclysmic variable CV3 was observed at  18.5 < V < 20.0  during five observing runs, but went into a low state in 2003 May when it reached   V > 22  . We have found that the light curve of the optical companion to the millisecond pulsar PSR J1740−5340 exhibits noticeable changes of its amplitude on a time-scale of a few months. A shallow eclipse with  Δ V = 0.03 mag  was detected in one of the cluster turn-off stars suggesting the presence of a large planet or brown dwarf in orbit.  相似文献   

15.
We use very large cosmological N -body simulations to obtain accurate predictions for the two-point correlations and power spectra of mass-limited samples of galaxy clusters. We consider two currently popular cold dark matter (CDM) cosmogonies, a critical density model ( τ CDM) and a flat low density model with a cosmological constant (ΛCDM). Our simulations each use 109 particles to follow the mass distribution within cubes of side 2  h −1 Gpc ( τ CDM) and 3  h −1 Gpc (ΛCDM) with a force resolution better than 10−4 of the cube side. We investigate how the predicted cluster correlations increase for samples of increasing mass and decreasing abundance. Very similar behaviour is found in the two cases. The correlation length increases from     for samples with mean separation     to     for samples with     The lower value here corresponds to τ CDM and the upper to ΛCDM. The power spectra of these cluster samples are accurately parallel to those of the mass over more than a decade in scale. Both correlation lengths and power spectrum biases can be predicted to better than 10 per cent using the simple model of Sheth, Mo & Tormen. This prediction requires only the linear mass power spectrum and has no adjustable parameters. We compare our predictions with published results for the automated plate measurement (APM) cluster sample. The observed variation of correlation length with richness agrees well with the models, particularly for ΛCDM. The observed power spectrum (for a cluster sample of mean separation     ) lies significantly above the predictions of both models.  相似文献   

16.
A submillimetre survey of the star formation history of radio galaxies   总被引:1,自引:0,他引:1  
We present the results of the first major systematic submillimetre survey of radio galaxies spanning the redshift range 1< z <5. The primary aim of this work is to elucidate the star formation history of this sub class of elliptical galaxies by tracing the cosmological evolution of dust mass. Using SCUBA on the JCMT, we have obtained 850-μm photometry of 47 radio galaxies to a consistent rms depth of 1 mJy, and have detected dust emission in 14 cases. The radio galaxy targets have been selected from a series of low-frequency radio surveys of increasing depth (3CRR, 6CE, etc.), in order to allow us to separate the effects of increasing redshift and increasing radio power on submillimetre luminosity. Although the dynamic range of our study is inevitably small, we find clear evidence that the typical submillimetre luminosity (and hence dust mass) of a powerful radio galaxy is a strongly increasing function of redshift; the detection rate rises from ≃15 per cent at z <2.5 to ≳75 per cent at z >2.5, and the average submillimetre luminosity rises at a rate ∝(1+ z )3 out to z ≃4. Moreover, our extensive sample allows us to argue that this behaviour is not driven by underlying correlations with other radio galaxy properties such as radio power, radio spectral index, or radio source size/age. Although radio selection may introduce other more subtle biases, the redshift distribution of our detected objects is in fact consistent with the most recent estimates of the redshift distribution of comparably bright submillimetre sources discovered in blank field surveys. The evolution of submillimetre luminosity found here for radio galaxies may thus be representative of massive ellipticals in general.  相似文献   

17.
18.
We describe a spectroscopic survey designed to uncover an estimated ∼40 AM Canum Venaticorum (AM CVn) stars hiding in the photometric data base of the Sloan Digital Sky Survey. We have constructed a relatively small sample of about 1500 candidates based on a colour selection, which should contain the majority of all AM CVn binaries while remaining small enough that spectroscopic identification of the full sample is feasible.
We present the first new AM CVn star discovered using this strategy, SDSS J080449.49+161624.8, the ultracompact binary nature of which is demonstrated using high-time-resolution spectroscopy obtained with the Magellan telescopes at Las Campanas Observatory, Chile. A kinematic 'S-wave' feature is observed on a period   P orb= 44.5 ± 0.1 min  , which we propose is the orbital period, although the present data cannot yet exclude its nearest daily aliases.
The new AM CVn star shows a peculiar spectrum of broad, single-peaked helium emission lines with unusually strong series of ionized helium, reminiscent of the (intermediate) polars among the hydrogen-rich cataclysmic variables. We speculate that SDSS J0804+1616 may be the first magnetic AM CVn star. The accreted material appears to be enriched in nitrogen, to N/O ≳ 10 and N/C > 10 by number, indicating CNO cycle hydrogen burning, but no helium burning, in the prior evolution of the donor star.  相似文献   

19.
We present observations of dwarf nova oscillations (DNOs), longer-period dwarf nova oscillations (lpDNOs), and quasi-periodic oscillations (QPOs) in 13 cataclysmic variable stars. In the six systems, WW Cet, BP CrA, BR Lup, HP Nor, AG Hya and V1193 Ori, rapid, quasi-coherent oscillations are detected for the first time. For the remainder of the systems discussed, we have observed more classes of oscillations, in addition to the rapid oscillations they were already known to display, or previously unknown aspects of the behaviour of the oscillations. The period of a QPO in RU Peg is seen to change by 84 per cent over the 10 nights of the decline from outburst – the largest evolution of a QPO period observed to date. A period–luminosity relation similar to the relation that has long been known to apply to DNOs is found for lpDNOs in X Leo; this is the first clear case of the lpDNO frequency scaling with accretion luminosity. WX Hyi and V893 Sco are added to the small list of dwarf novae that have shown oscillations in quiescence.  相似文献   

20.
Hubble Space Telescope images of a sample of 285 galaxies with measured redshifts from the Canada–France Redshift Survey (CFRS) and Autofib–Low Dispersion Spectrograph Survey (LDSS) redshift surveys are analysed to derive the evolution of the merger fraction out to redshifts z ∼1. We have performed visual and machine-based merger identifications, as well as counts of bright pairs of galaxies with magnitude differences δm ≤1.5 mag. We find that the pair fraction increases with redshift, with up to ∼20 per cent of the galaxies being in physical pairs at z ∼0.75–1. We derive a merger fraction varying with redshift as ∝(1+ z )3.2±0.6, after correction for line-of-sight contamination, in excellent agreement with the merger fraction derived from the visual classification of mergers for which m =3.4±0.6. After correcting for seeing effects on the ground-based selection of survey galaxies, we conclude that the pair fraction evolves as ∝(1+ z )2.7±0.6. This implies that an average L * galaxy will have undergone 0.8–1.8 merger events from z =1 to z =0, with 0.5 to 1.2 merger events occuring in a 2-Gyr time-span at around z ∼0.9. This result is consistent with predictions from semi-analytical models of galaxy formation. From the simple coaddition of the observed luminosities of the galaxies in pairs, physical mergers are computed to lead to a brightening of 0.5 mag for each pair on average, and a boost in star formation rate of a factor of 2, as derived from the average [O  ii ] equivalent widths. Mergers of galaxies are therefore contributing significantly to the evolution of both the luminosity function and luminosity density of the Universe out to z ∼1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号