首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《China Geology》2020,3(2):197-209
Clayey silt reservoirs bearing natural gas hydrates (NGH) are considered to be the hydrate-bearing reservoirs that boast the highest reserves but tend to be the most difficult to exploit. They are proved to be exploitable by the first NGH production test conducted in the South China Sea in 2017. Based on the understanding of the first production test, the China Geological Survey determined the optimal target NGH reservoirs for production test and conducted a detailed assessment, numerical and experimental simulation, and onshore testing of the reservoirs. After that, it conducted the second offshore NGH production test in 1225 m deep Shenhu Area, South China Sea (also referred to as the second production test) from October 2019 to April 2020. During the second production test, a series of technical challenges of drilling horizontal wells in shallow soft strata in deep sea were met, including wellhead stability, directional drilling of a horizontal well, reservoir stimulation and sand control, and accurate depressurization. As a result, 30 days of continuous gas production was achieved, with a cumulative gas production of 86.14 ×104 m3. Thus, the average daily gas production is 2.87 ×104 m3, which is 5.57 times as much as that obtained in the first production test. Therefore, both the cumulative gas production and the daily gas production were highly improved compared to the first production test. As indicated by the monitoring results of the second production test, there was no anomaly in methane content in the seafloor, seawater, and atmosphere throughout the whole production test. This successful production test further indicates that safe and effective NGH exploitation is feasible in clayey silt NGH reservoirs. The industrialization of hydrates consists of five stages in general, namely theoretical research and simulation experiments, exploratory production test, experimental production test, productive production test, and commercial production. The second production test serves as an important step from the exploratory production test to experimental production test.  相似文献   

2.
《China Geology》2018,1(1):5-16
Natural gas hydrates (NGH) is one of key future clean energy resources. Its industrialized development will help remit the huge demand of global natural gas, relieve the increasing pressure of the environment, and play a vital role in the green sustainable growth of human societies. Based on nearly two decades’ studying on the reservoir characteristics in the South China Sea (SCS) and the knowledge of reservoir system, the China Geological Survey (CGS) conducted the first production test on an optimal target selected in Shenhu area SCS in 2017. Guided by the “three-phase control” exploitation theory which focused on formation stabilization, technologies such as formation fluid extraction, well drilling and completing, reservoir stimulating, sand controlling, environmental monitoring, monitoring and preventing of secondary formation of hydrates were applied. The test lasted for 60 days from May 10th when starting to pump, drop pressure and ignite to well killing on July 9th, with gas production of 3.09×105 m3 in total, which is a world record with the longest continuous duration of gas production and maximal gas yield. This successful test brings a significant breakthrough on safety control of NGH production.  相似文献   

3.
《China Geology》2020,3(1):16-27
Bottom simulating reflector (BSR) has been recognized as one of the indicators of gas hydrates. However, BSR and hydrate are not one-to-one correspondence. In the Xisha area of South China Sea (SCS), carbonate rocks wildly develop, which continuously distribute parallel to the seafloor with high amplitude on seismic sections, exhibiting reflections similar to BSRs in the Shenhu area nearby. This phenomenon causes some interference to hydrates identification. In this paper, the authors discussed the typical geophysical differences between carbonate rocks and hydrates, indicating that the main difference exists in relationship between porosity and velocity, causing different amplitude versus offset (AVO) characters. Then the authors proposed a new model assuming that the carbonates form the matrix and the hydrate fill the pore as a part of the matrix. The key modeling parameters have been optimized constrained by P-velocities and S-velocities simultaneously, and the model works well both for carbonate rock and gas hydrate bearing sediments. For quantitative identification, the authors calculated the velocities when carbonates and hydrates form the matrix together in different proportions. Then they proposed a carbonate and hydrate identification template (CHIT), in which the possible hydrate saturation (PHS) and possible carbonate content (PCC) can be both scaled out for a group of sample composed by P-velocity and S-velocity. If PHS is far larger than PCC, it is more likely to be a hydrate sample because carbonates and hydrates do not coexist normally. The real data application shows that the template can effectively distinguish between hydrates and carbonate rocks, consequently reducing the risk of hydrate exploration.  相似文献   

4.
泥质粉砂型天然气水合物被认为是储量最大开采难度亦最大的水合物储层,2017年南海天然气水合物试采,初步验证了此类水合物储层具备可开采性。在总结前次试采认识的基础上,对试采矿体进行优选、精细评价、数值与试验模拟和陆地试验,中国地质调查局于2019年10月—2020年4月在南海水深1225 m神狐海域进行了第二次天然气水合物试采。本次试采攻克了钻井井口稳定性、水平井定向钻进、储层增产改造与防砂、精准降压等一系列深水浅软地层水平井技术难题,实现连续产气30 d,总产气量86.14×104m3,日均产气2.87×104m3,是首次试采日产气量的5.57倍,大大提高了日产气量和产气总量。试采监测结果表明,整个试采过程海底、海水及大气甲烷含量无异常。本次成功试采进一步表明,泥质粉砂储层天然气水合物具备可安全高效开采的可行性。  相似文献   

5.
《China Geology》2018,1(2):202-209
Natural gas hydrate (NGH) is considered as one of the new clean energy sources of the 21st century with the highest potential. The environmental issues of NGH production have attracted the close attention of scientists in various countries. From May 10 to July 9, 2017, the first offshore NGH production test in the South China Sea (SCS) was conducted by the China Geological Survey. In addition, environmental security has also been effectively guaranteed via a comprehensive environmental monitoring system built during the NGH production test. The monitoring system considered sea-surface atmosphere methane and carbon dioxide concentrations, dissolved methane in the sea water column, and the seafloor physical oceanography and marine chemistry environment. The whole process was monitored via multiple means, in multiple layers, in all domains, and in real time. After the production test, an environmental investigation was promptly conducted to evaluate the environmental impact of the NGH production test. The monitoring results showed that the dissolved methane concentration in seawater and the near-seabed environment characteristics after the test were consistent with the background values, indicating that the NGH production test did not cause environmental problems such as methane leakage.  相似文献   

6.
天然气水合物沉积环境出现的岩石矿物主要为碳酸盐岩、黄铁矿、石膏等。自生碳酸盐岩的典型特点为极负的δ13CPDB值(最低可达-70.0‰)、正的δ18OPD。值(+2.5‰-+6.5‰),碳酸盐矿物主要为镁方解石、文石、白云石和菱铁矿。黄铁矿以霉球状、条状为主。石膏则主要为自形晶体,透明。此类自生岩石矿物与甲烷厌氧氧化过程或水合物的形成效应有关。南海沉积物中出现的自生碳酸盐岩、黄铁矿和石膏,其特点与水合物沉积环境中的十分类似,预示了南海可能存在有利于水合物成藏的地球化学过程。  相似文献   

7.
《China Geology》2020,3(2):210-220
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin, which is on the northern continental slope of the South China Sea. Gas hydrates in this area have been intensively investigated, achieving a wide coverage of the three-dimensional seismic survey, a large number of boreholes, and detailed data of the seismic survey, logging, and core analysis. In the beginning of 2020, China has successfully conducted the second offshore production test of gas hydrates in this area. In this paper, studies were made on the structure of the hydrate system for the production test, based on detailed logging data and core analysis of this area. As to the results of nuclear magnetic resonance (NMR) logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition, the hydrate system on which the production well located can be divided into three layers: (1) 207.8–253.4 mbsf, 45.6 m thick, gas hydrate layer, with gas hydrate saturation of 0–54.5% (31% av.); (2) 253.4–278 mbsf, 24.6 m thick, mixing layer consisting of gas hydrates, free gas, and water, with gas hydrate saturation of 0–22% (10% av.) and free gas saturation of 0–32% (13% av.); (3) 278–297 mbsf, 19 m thick, with free gas saturation of less than 7%. Moreover, the pore water freshening identified in the sediment cores, taken from the depth below the theoretically calculated base of methane hydrate stability zone, indicates the occurrence of gas hydrate. All these data reveal that gas hydrates, free gas, and water coexist in the mixing layer from different aspects.  相似文献   

8.
《China Geology》2018,1(3):367-373
There are many factors affecting the instability of the submarine hydrate-bearing slope (SHBS), and the interaction with hydrate is very complicated. In this paper, the mechanical mechanism of the static liquefaction and instability of submarine slope caused by the dissociation of natural gas hydrate (NGH) resulting in the rapid increase of pore pressure of gas hydrate-bearing sediments (GHBS) and the decrease of effective stress are analyzed based on the time series and type of SHBS. Then, taking the typical submarine slope in the northern South China Sea as an example, four important factors affecting the stability of SHBS are selected, such as the degree of hydrate dissociation, the depth of hydrate burial, the thickness of hydrate, and the depth of seawater. According to the principle of orthogonal method, 25 orthogonal test schemes with 4 factors and 5 levels are designed and the safety factors of submarine slope stability of each scheme are calculated by using the strength reduction finite element method. By means of the orthogonal design range analysis and the variance analysis, sensitivity of influential factors on stability of SHBS are obtained. The results show that the degree of hydrate dissociation is the most sensitive, followed by hydrate burial depth, the thickness of hydrate and the depth of seawater. Finally, the concept of gas hydrate critical burial depth is put forward according to the influence law of gas hydrate burial depth, and the numerical simulation for specific submarine slope is carried out, which indicates the existence of critical burial depth.  相似文献   

9.
《China Geology》2018,1(4):493-504
In May and July of 2017, China Geological Survey (CGS), and Guangzhou Marine Geological Survey (GMGS) carried out a production test of gas hydrate in the Shenhu area of the South China Sea and acquired a breakthrough of two months continuous gas production and nearly 3.1 × 105 m3 of production. The gas hydrate reservoir in the Shenhu area of China, is mainly composed of fine-grained clay silt with low permeability, and very difficult for exploitation, which is very different from those discovered in the USA, and Canada (both are conglomerate), Japan (generally coarse sand) and India (fracture-filled gas hydrate). Based on 3D seismic data preserved-amplitude processing and fine imaging, combined with logging-while-drilling (LWD) and core analysis data, this paper discusses the identification and reservoir characterization of gas hydrate orebodies in the Shenhu production test area. We also describe the distribution characteristics of the gas hydrate deposits and provided reliable data support for the optimization of the production well location. Through BSR feature recognition, seismic attribute analysis, model based seismic inversion and gas hydrate reservoir characterization, this paper describes two relatively independent gas hydrate orebodies in the Shenhu area, which are distributed in the north-south strip and tend to be thicker in the middle and thinner at the edge. The effective thickness of one orebody is bigger but the distribution area is relatively small. The model calculation results show that the distribution area of the gas hydrate orebody controlled by W18/W19 is about 11.24 km2, with an average thickness of 19 m and a maximum thickness of 39 m, and the distribution area of the gas hydrate orebody controlled by W11/W17 is about 6.42 km2, with an average thickness of 26 m and a maximum thickness of 90 m.  相似文献   

10.
研究目的】中国地质调查局先后于2017年、2020年在南海北部神狐海域成功实施两轮水合物试采,创造了产气时间最长、产气总量最大、日均产气量最高等多项世界纪录,了解和掌握南海天然气水合物开采储层相变与渗流机理,有助于进一步揭示该类型水合物分解机理、产出规律、增产机制等,可为中国海域水合物资源规模高效开采提供理论基础。【研究方法】基于两轮试采实践,笔者通过深入研究发现,储层结构表征、水合物相变、多相渗流与增渗、产能模拟与调控是制约水合物分解产气效率的重要因素。【研究结果】研究表明,南海水合物相变具有分解温度低,易在储层内形成二次水合物等特点,是由渗流场-应力场-温度场-化学场共同作用的复杂系统;多相渗流作用主要受控于未固结储层的物性特征、水合物相变、开采方式等多元因素影响,具有较强的甲烷吸附性、绝对渗透率易突变、气相流动能力弱等特点;围绕南海水合物长期、稳定、高效开采目标,需要在初始储层改造基础上,通过实施储层二次改造,进一步优化提高储层渗流能力,实现增渗扩产目的。【结论】随着天然气水合物产业化进程不断向前推进,还需要着力解决大规模长时间产气过程中温度压力微观变化及物质能源交换响应机制以及水合物高效分解、二次生成边界条件等难题。创新点:南海水合物相变是由渗流场-应力场-温度场-化学场共同作用的复杂系统;南海泥质粉砂储层具有较强的甲烷吸附性、绝对渗透率易突变、气相流动能力弱等特点,多相渗流机理复杂。  相似文献   

11.
Traditional suction anchor technology is mainly used in the fields of subsea structure bearing foundations,single-point mooring systems and offshore wind power. It is characterized by providing sufficient lateral and vertical bearing capacities and lateral bending moment. The anchor structure of a traditional suction anchor structure is improved with wellhead suction anchor technology, where a central pipe is added as a channel for drilling and completion operations. To solve the technical probl...  相似文献   

12.
《China Geology》2020,3(3):362-368
Gas hydrate is one kind of potential energy resources that is buried under deep seafloor or frozen areas. The first trial offshore production from the silty reservoir was conducted in the South China Sea by the China Geological Survey (CGS). During this test, there were many unique characteristics different from the sand reservoir, which was believed to be related to the clayed silt physical properties. In this paper, simulation experiments, facilities analysis, and theoretical calculation were used to confirm the hydrate structure, reservoir thermo-physical property, and bond water movement rule. And the behavior of how they affected production efficiency was analyzed. The results showed that: It was reasonable to use the structure I rather than structure II methane hydrate phase equilibrium data to make the production plan; the dissociation heat absorbed by hydrate was large enough to cause hydrate self-protection or reformation depend on the reservoir thermal transfer and gas supply; clayed silt got better thermal conductivity compared to coarse grain, but poor thermal convection especially with hydrate; clayed silt sediment was easy to bond water, but the irreducible water can be exchanged to free water under high production pressure, and the most obvious pressure range of water increment was 1.9–4.9 MPa.  相似文献   

13.
The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear. High-resolution seismic data and gas hydrate drilling data collected from the Shenhu gas hydrate field (site SH5) offer a valuable opportunity to study the relations between submarine slope failure and hydrocarbon accumulation and flow that is associated with a ~2 km-diameter gas chimney developed beneath site SH5 where none gas hydrates had been recovered by drilling and sampling despite the presence of distinct bottom simulating reflectors (BSRs) and favorable gas hydrate indication. The mechanism of submarine slope failure resulted from buoyancy extrusion and seepage-derived deformation which were caused by overpressure from a ~1100 m-high gas column in a gas chimney was studied via numerical simulation. The ~9.55 MPa overpressure caused by hydrocarbons that migrated through the gas chimney and then accumulated beneath subsurface gas hydrate-bearing impermeable sediments. This may have resulted in a submarine slope failure, which disequilibrated the gas hydrate-bearing zone and completely decomposed the gas hydrate once precipitated at site SH5. Before the gas hydrate decomposition, the largely impermeable sediments overlying the gas chimney may have undergone a major upward deformation due to the buoyancy extrusion of the overpressure in the gas chimney, and slope failure was initiated from plastic strain of the sediments and reduced internal strength. Slope failure subsequently resulted in partial gas hydrate decomposition and sediment permeability increase. The pressurized gas in the gas chimney may have diffused into the overlying sediments controlled by seepage-derived deformation, causing an effective stress reduction at the base of the sediments and significant plastic deformation. This may have formed a new cycle of submarine slope failure and finally the total gas hydrate dissociation. The modeling results of buoyancy extrusion and seepage-derived deformation of the overpressure in the gas chimney would provide new understanding in the development of submarine slope failure and the link between slope failure and gas hydrate accumulation and dissociation.  相似文献   

14.
《China Geology》2019,2(1):49-55
Although the Shenhu sea area has been a topic and focus of intense research for the exploration and study of marine gas hydrate in China, the mechanism of gas hydrate accumulation in this region remains controversial. The formation rate and evolution time of gas hydrate are the critical basis for studying the gas hydrate formation of the Shenhu sea area. In this paper, based on the positive anomaly characteristics of chloride concentration that measured in the GMGS3-W19 drilling site is higher than the seawater value, we numerically simulated the gas hydrate formation time of GMGS3-W19 site. The simulation results show that the gas hydrate formation rate positively correlates with the chloride concentration when the hydrate reaches the measured saturation. The formation time of gas hydrate in the GMGS3-W19 site is approximately 30 ka. Moreover, the measured chloride concentration is consistent with the in-situ chloride concentration, indicating that the formation rate of gas hydrate at the GMGS3-W19 site is very fast with a relatively short evolution time.©2019 China Geology Editorial Office.  相似文献   

15.
于兴河  张志杰 《中国地质》2005,32(3):470-476
南海北部陆坡区新生界含有丰富的油气资源和各种矿产资源,对其沉积体系的分析可以指导资源勘探和开发。笔者在对南海北部陆坡区的西沙海槽和东沙海域的地震剖面解释与研究的基础上,依据“外部形态+内部属性”的分类原则,在中新世以来的沉积层中共识别出8种典型的地震相:席状平行相、席状波形相、席状空白相、席状杂乱相、席状前积相、帚状前积相、透镜状前积相和丘状杂乱相。结合地震相分析,在南海北部陆坡区识别出6种典型的沉积体系:三角洲体系、等深流、低位扇、滑塌块体、浊积扇和扇三角洲体系;其中等深流、滑塌块体和各种扇体的前缘与BSR分布的吻合率最高,是最有利于天然气水合物聚集成矿的相带。  相似文献   

16.
中国南海北部陆坡区是天然气水合物成藏的理想场所,资源潜力巨大。文章基于天然气水合物勘探成果,结合南海北部天然气水合物成藏地质背景,从天然气水合物成藏的温压稳定条件、气源形成条件、构造输导条件和沉积储集条件4方面,系统分析了南海北部天然气水合物成藏的基本地质条件,探讨了南海北部陆坡中部神狐海域、南海北部陆坡西部海域和南海北部陆坡东北部海域天然气水合物的成藏类型与成因模式。结果认为,南海北部陆坡中部神狐海域主要发育扩散型水合物,而南海北部陆坡西部海域主要发育渗漏型水合物,南海北部陆坡东北部海域则发育兼具扩散型与渗漏型特征的复合型水合物。  相似文献   

17.
Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea. However, there remains a lot of key questions yet to be resolved, particularly about the mechanisms and the controls of gas hydrates enrichment. Numerical simulaution would play signficant role in addressing these questions. This study focused on the gas hydrate exploration in the Shenhu Area, Northern South China Sea. Based on the newly obtained borehole and multichannel reflection seismic data, the authors conducted an integrated 3D basin modeling study on gas hydrate. The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation, such as temperature, pressure, hydrocarbon source, and tectonic setting. Gas hydrates are most concentrated in the Late Miocene strata, particularly in the structual highs between the Baiyun Sag and the Liwan Sag, and area to the south of it. It also proved the existence of overpressure in the main sag of source rocks, which was subject to compaction disequilibrium and hydrocarbon generation. It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage. The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential.©2022 China Geology Editorial Office.  相似文献   

18.
南海北部陆坡区神狐海域构造特征及对水合物的控制   总被引:5,自引:0,他引:5  
通过对南海北部陆坡区神狐海域高精度2D和3D地震资料的精细解释,在研究区共识别出4种构造类型,分别为气烟囱(流体底辟)、区域大尺度断层、深水扇中的正断层和滑移体中的滑脱断层。气烟囱具有直立的通道形态,其内部结构可划分为杂乱反射带、模糊反射带和顶部强振幅区域。大尺度断层位于水合物钻探区的西北部和东北部,断层规模大,对深部地层表现出明显的控制作用。深水扇中的正断层广泛发育于上新世的深水扇中,特别是在水合物钻探区西部进积特征明显的深水扇中,正断层的数量更多。滑移体中的滑脱断层在神狐海域的第四纪地层中非常常见,在剖面上呈雁列式分布。研究结果表明,大尺度断层由于和水合物钻探区的距离较远,对于水合物的成藏可能不起控制作用。气烟囱和规模小数量多的断裂体系为含气流体的运移提供了垂向和侧向的输送通道,构成了水合物的流体运移体系。当富含甲烷气体的流体通过这些垂向-侧向的运移通道时,在合适的温压条件下,被适于水合物聚集的沉积体所捕获,就有可能形成水合物。水合物钻探区内东西部构造特征的差异,使得研究区内形成了不同的流体运移体系,这可能是控制钻探区水合物不均匀性分布的一个关键因素。  相似文献   

19.
海底可视技术是一种可以直观地对海底地形地貌、表层沉积物类型、生物群落等进行实时观察的调查手段。本文介绍了海底摄像、电视抓斗、深拖系统和ROV四种海底可视技术,并对海底可视技术在南海北部陆坡天然气水合物勘查中的应用进行阐述。利用海底可视技术,在南海北部陆坡发现了天然气水合物气体“冷泉”喷溢形成的自生碳酸盐岩和活动于天然气水合物冷喷溢口或渗流口周围的菌席、双壳类、管状蠕虫等化能自养生物群,圈定出该陆坡由天然气水合物气体“冷泉”喷溢形成的巨型碳酸盐岩面积达430km^2。  相似文献   

20.
南海北部陆坡分类及成因分析   总被引:3,自引:0,他引:3  
陆坡形态隐含了丰富的地质信息,其差异性是大陆边缘沉积、侵蚀过程长期交互作用的结果。利用横跨南海北部的二维地震测线,采取曲线拟合的研究手段,在南海北部识别出了下凹型、平直型、"S"型等三种类型的陆坡。下凹型陆坡发育在莺歌海-琼东南西部、珠江口中部两个陆坡区,但其成因不同,前者主要受控于快速的沉积物供给,而后者受到陆架边缘三角洲进积和海底峡谷侵蚀的联合作用;平直型陆坡仅见于琼东南东部地区,其主控因素为弱的沉积物供给和较快的构造沉降;"S"型陆坡发育在珠江口地区的两翼,其形成明显受到海流和内波等外作用的改造。不同类型的陆坡具有特定的地层叠置样式、陆架坡折迁移轨迹类型和沉积体系分布特征。对陆坡类型的研究有助于建立沉积过程和产物的预测模式,从而指导古代陆坡的深水油气勘探。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号