共查询到20条相似文献,搜索用时 15 毫秒
1.
Gregory W. Kallemeyn William V. Boynton John Willis John T. Wasson 《Geochimica et cosmochimica acta》1978,42(5):507-515
The Bencubbin meteorite is a polymict breccia consisting of a host fraction of ~60% metal and ~40% ferromagnesian silicates and a selection of carbonaceous, ordinary and ‘enstatite’ chondritic clasts. Concentrations of 27 elements were determined by neutron activation in replicate samples of the host silicates and the ordinary and carbonaceous chondritic clasts; 12 elements were determined in the host metal. Compositional data for the ordinary chondrite clast indicate a classification of LL4 ± 1. Refractory element data for the carbonaceous chondrite clast indicate that it belongs to the CI-CM-CO clan; its volatile element abundances are intermediate between those of CM and CO chondrites. Abundances of nonvolatile elements in the silicate host are similar to those in the carbonaceous chondrite clast and in CM chondrites; the rare earths are unfractionated. We conclude that it is not achondritic as previously designated, but chondritic and that it is probably related to the CI-CM-CO clan; its volatile abundances are lower than those in CO chondrites. Oxygen isotope data are consistent with these classifications. Host metal in Bencubbin and in the closely related Weatherford meteorite has low abundances of moderately volatile siderophiles; among iron meteorite groups its nearest relative is group IIIF.We suggest that Bencubbin and Weatherford formed as a result of an impact event on a carbonaceous chondrite regolith. The impact generated an ‘instant magma’ that trapped and surrounded regolithic clasts to form the polymict breccia. The parent of this ‘magma’ was probably the regolith itself, perhaps mainly consisting of the so-called ‘enstatite’ chondrite materials. Accretion of such a variety of materials to a small parent body was probably only possible in the asteroid belt. 相似文献
2.
3.
David W. Mittlefehldt 《Geochimica et cosmochimica acta》1979,43(12):1917-1935
Combined petrographic, electron microprobe and instrumental neutron activation analysis (INAA) studies of igneous lithic clasts separated from mesosiderites and howardites and INAA investigation only of whole rock eucrites and diogenites have been performed to help elucidate the differentiation processes that occurred on asteroidal sized bodies. Although similar to eucrites in mineralogy and major element chemistry, trace element abundances in basaltic lithic clasts give evidence for more complex differentiation episodes than have been observed for eucrites. These complex fractionations include sequential melting and expulsion of liquid from the source region and remelting of cumulate materials, followed by a second fractional crystallization episode. Rare earth element (REE) abundances in a basaltic clast from Petersburg suggest that the source region which produced this melt was noticably different from that which produced the eucrites Pasamonte and Bereba.Pyroxenites from mesosiderites show slight enrichments in Sc and Mn when compared with average diogenites. This suggests that the pyroxenites in mesosiderites are not fragments of diogenites sensu stricto. A plagioclase clast from the Johnstown diogenite contains light REE abundances that are not in equilibrium with the pyroxene phase. This implies that some of the plagioclase in diogenites may be a foreign component not directly related to the diogenites. This component probably formed on the same parent body as the diogenites however.The characteristics which are inferred for the heat source are that it was spatially and temporally variable. This suggests that heating of the differentiated meteorite parent bodies may in part have been from outside the parent body. 相似文献
4.
Edward R.D. Scott Richard C. Greenwood Ian A. Franchi Ian S. Sanders 《Geochimica et cosmochimica acta》2009,73(19):5835-5853
A few eucrites have anomalous oxygen isotopic compositions. To help understand their origin and identify additional samples, we have analyzed the oxygen isotopic compositions of 18 eucrites and four diogenites. Except for five eucrites, these meteorites have Δ17O values that lie within 2σ of their mean value viz., −0.242 ± 0.016‰, consistent with igneous isotopic homogenization of Vesta. The five exceptional eucrites—NWA 1240, Pasamonte (both clast and matrix samples), PCA 91007, A-881394, and Ibitira—have Δ17O values that lie, respectively, 4σ, 5σ, 5σ, 15σ, and 21σ away from this mean value. NWA 1240 has a δ18O value that is 5σ below the mean eucrite value. Four of the five outliers are unbrecciated and unshocked basaltic eucrites, like NWA 011, the first eucrite found to have an anomalous oxygen isotopic composition. The fifth outlier, Pasamonte, is composed almost entirely of unequilibrated basaltic clasts. Published chemical data for the six eucrites with anomalous oxygen isotopic compositions (including NWA 011) exclude contamination by chondritic projectiles as a source of the oxygen anomalies. Only NWA 011 has an anomalous Fe/Mn ratio, but several anomalous eucrites have exceptional Na, Ti, or Cr concentrations. We infer that the six anomalous eucrites are probably derived from five distinct Vesta-like parent bodies (Pasamonte and PCA 91007 could come from one body). These anomalous eucrites, like the isotopically normal, unbrecciated eucrites with 4.48 Gyr Ar-Ar ages, are probably deficient in brecciation and shock effects because they were sequestered in small asteroids (10 km diameter) during the Late Heavy Bombardment following ejection from Vesta-like bodies. The preservation of Vesta’s crust and the lack of deeply buried samples from the hypothesized Vesta-like bodies are consistent with the removal of these bodies from the asteroid belt by gravitational perturbations from planets and protoplanets, rather than by collisional grinding. 相似文献
5.
Twenty-nine unbrecciated eucrites have been thoroughly characterized in terms of the petrologic factors that affect their spectra, such as mineral chemistry, modal adundances, grain sizes, and textures. We have conducted a combined petrologic and spectral study designed to provide insight into the petrogenesis of the basaltic crust of Vesta and the variety of rock-types that exist within it, as well as aid in the petrologic interpretation of spectra to be collected by the Dawn orbiting spacecraft. This paper details the petrology part of the study. Unbrecciated eucrite samples were selected to avoid the complications of lithologic mixing in the accompanying spectral study. A wide variety of textural types are seen within the basaltic eucrites, encompassing quenched, coarse-grained, and granoblastic samples. Zoned pyroxenes in eucrites and those that preserve a history of initial rapid cooling are rare. Nearly all eucrite samples have been thermally metamorphosed and would commonly be classified as equilibrated; however, this term reflects only the quadrilateral (Mg, Fe, and Ca) compositions of pyroxenes, and considerable variations are seen within the minor elements (Al, Ti, and Cr) in pyroxenes as well as plagioclase compositions. Determination of both pyroxene and plagioclase compositions together with pyroxene geothermometry provides a better estimate for the relative degree of thermal metamorphism a eucrite has experienced. The petrologic differences observed here might allow different eucrites to be distinguished spectrally. This is especially true for the varying pyroxene compositions as the spectra of eucrites are dominated by absorption features attributed to pyroxene. 相似文献
6.
High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS 总被引:1,自引:0,他引:1
The first cold plasma ICP-MS (inductively coupled plasma mass spectrometer) Fe isotope study is described. Application of this technique to the analyses of Fe isotopes in a number of meteorites is also reported. The measurement technique relies on reduced temperature operation of the ICP source to eliminate pervasive molecular interferences from Ar complexes associated with conventional ICP-MS. Instrumental mass bias corrections are performed by sample-standard bracketing and using Cu as an external mass bias drift monitor. Repeated measurements of a terrestrial basalt reference sample indicate an external reproducibility of ± 0.06 ‰ for δ56Fe and ± 0.25 ‰ for δ58Fe (1 σ). The measured iron isotopic compositions of various bulk meteorites, including irons, chondrites and pallasites are identical, within error, to the composition of our terrestrial basalt reference sample suggesting that iron mass fractionation during planet formation and differentiation was non-existent. Iron isotope compositions measured for eight chondrules from the unequilibrated ordinary chondrite Tieschitz range from −0.5 ‰ < δ56Fechondrules < 0.0 ‰ relative to the terrestrial/meteorite average. Mechanisms for fractionating iron in these chondrules are discussed. 相似文献
7.
John W. Morgan Marie-josée Janssens Jan Hertogen Jacques Gros Hiroshi Takahashi 《Geochimica et cosmochimica acta》1979,43(6):803-815
Twenty-three samples from the Ries crater, representing a wide range of shock metamorphism, were analyzed for seven siderophile elements (Au, Ge, Ir, Ni, Os, Pd, Re) and five volatile elements (Ag, Cd, Sb, Se, Zn). Taking Ir as an example, we found siderophile enrichments over the indigenous level of 0.015 ppb Ir occur in only eight samples. The excess is very modest; even the most enriched samples (a weakly shocked biotite gneiss and a metal-impregnated amphibolite) have Ir, Os corresponding to ~4 × 10?4 C1 chondrite abundances. Of five flädle glasses analyzed only one shows excess Ir. Suevite matrix and vesicular glass have slight enrichment, but homogenous glass from the same rock does not. In flädle glasses, Ni and Se are strongly correlated and apparently reside in Ir, Os-poor Sulfides [pyrrhotite, chalcopyrite, pentlandite(?)]of terrestrial, probably sedimentary, origin. The Ir, Os and Ni enrichments of the metal-bearing amphibolite are compatible with chondritic ratios, but these are ill-defined because of uncertainty in Ni. In the other samples enriched in siderophiles Ir(Os), Ni and Se are mutually correlated; and ~ 11 × C1 and are much higher than any chondritic ratios; and suggests a sulfide phase, rather than metal may be the host of the correlated elements. Lacking a plausible local source, this material is apparently meteoritic in origin. The unusual elemental ratios, coupled with the very low enrichments, tend to exclude chondrites and most irons as likely projectile material. Of the achondrites, aubrites seem slightly preferable. Ratios of excess siderophiles in Ries materiel match tolerably those of an aubrite (possibly atypical) occurring as an inclusion in the Bencubbin meteorite, Australia. The Hungaria group of Mars-crossing asteroids may be a source of aubritic projectiles. 相似文献
8.
We performed instrumental neutron activation analysis on a large suite of antarctic and nonantarctic eucrites, including unbrecciated, brecciated, and polymict eucrites and cumulate and noncumulate eucrites. We evaluate the use of Hf and Ta, two highly incompatible elements, as sensitive indicators of partial melting or fractional crystallization processes. Comparison with rare earth element (REE) data from nonantarctic and antarctic eucrites shows that Hf and Ta are unaffected by the terrestrial alteration that has modified the REE contents and patterns of some antarctic eucrites. The major host phases for Hf and Ta—zircon, baddeleyite, ilmenite, and titanite—are much less susceptible to terrestrial alteration than the phosphate hosts of REEs. The host phases for Hf and Ta are minor or trace phases, so sample heterogeneity is a serious concern for obtaining representative compositions. The trace lithophile and siderophile element contents of noncumulate eucrites do not allow for a single, simple model for the petrogenesis of the howardite-eucrite-diogenite suite. Fractional crystallization models cannot reproduce the compositional relationship between eucrites of the main group-Nuevo Laredo trend and those of the Stannern trend. Equilibrium crystallization models cannot explain the trace element diversity observed among diogenites. Partial melting models cannot explain the W variations among eucrites, unless source regions had different metal contents. We suggest that slight variations in oxygen fugacity of eucrite source regions during partial melting can explain the W variations without requiring different metal contents. This hypothesis may fail to account for eucrite Co contents, however. 相似文献
9.
《Geochimica et cosmochimica acta》1986,50(11):2453-2460
Rare earth element (REE) abundances in eucrites were precisely determined on Juvinas, Pasamonte, Cachari, Stannem and Antarctic eucrites Y-74450,63,D+G; Y-75015,20,E+F; Y-75011,73; Y-790007,61,F; Y-75011,84,D-1 and Y-790007,61,E-4. The last two samples are eucrite clasts from polymict eucrites. The other Antarctic eucrite samples are matrix from polymict eucrites.Like the Stannern eucrite, all of the Antarctic eucrites have relatively high REE abundances. REE abundances in two clast samples are higher than those in the Stannern and matrix samples of the Antarctic eucrites. When REE abundances in the Antarctic eucrites and the Stannem eucrite are normalized by the REE abundance suite of the Juvinas or Pasamonte eucrites, highly linear REE patterns are obtained. For the Juvinas- or Pasamonte-normalized REE patterns of the Antarctic and Stannern eucrites, the inclination of the linear REE patterns increases with increasing REE abundances. These observations suggest that the eucrites with larger REE abundances such as the Stannern and Antarctic eucrites were produced as residual liquid in a fractional crystallization process from the main group of eucrites (e.g., the Juvinas eucrite). On the other hand, the Moore County cumulate eucrite is considered to be a solid phase formed in this process. 相似文献
10.
Roger H Hewins 《Geochimica et cosmochimica acta》1979,43(10):1663-1673
Howardites can be divided into two main groups, Ni-rich (>350ppm Ni) and Ni-poor (<150ppm Ni). In the Ni-rich group Ni occurs principally in metal grains associated with melt rocks and is largely derived from projectiles which caused the melting. The metal in Bununu, Kapoeta and Malvern melt rocks plots in the meteoritic Ni-Co range and in Bununu and Kapoeta is enriched in P. By contrast, most metal grains in primary lithic and crystal clasts in howardites are Ni-poor and plot mainly in the composition field of pristine lunar anorthosite metal. However, there are variations in the abundance and exact composition of primary metal from howardite to howardite and each therefore represents a discrete source region. The matrix metal in Bholgati, Bununu, and Kapoeta shows the diversity of compositions expected in a polymict breccia, with compositions plotting in and between the anorthositic and meteoritic Ni-Co fields. Other howardites show a more limited range of matrix metal compositions, because of limited metal-bearing clasts.Petersburg differs from other howardites in several ways. The metal in primary clasts has a unique ratio of about 40, which indicates derivation from a different reservoir from other howardite primary clasts. The metal in the matrix consists of large grains intergrown with silicates with compositions clustering tightly at 3.3% Ni, 0.2% Co. This is interpreted as equilibration, possibly as the result of deeper burial for Petersburg than for other howardites. 相似文献
11.
David W Mittlefehldt Chen-Lin Chou John T Wasson 《Geochimica et cosmochimica acta》1979,43(5):673-688
We report neutron activation data for major, minor and trace elements determined in whole rock howardites and silicates from mesosiderites. Compositions of howardites and mesosiderites are similar, and intermediate between those of eucrites and diogenites. Relative to howardites mean mesosiderite abundances are slightly nearer the diogenites. Literature data indicate that mesosiderites have a higher normative silica component than howardites. It appears that this partly results from a higher content of a highly evolved igneous component, and partly from in situ reduction of FeO to Fe followed by magnetic separation of metal prior to analysis. Removal of a portion of the FeO in this manner yields a higher normative SiO2 component for the nonmagnetic fraction. Petrographic observations demonstrate the formation of SiO2 which may have resulted from a combination of various factors including accretion of a reducing agent together with the Fe-Ni metal, extensive reaction during the long cooling period, and catalysis by the finely divided metal.In the mesosiderites Mincy, Lowicz and Veramin the light rare earth elements (REE) are enriched. The resulting REE pattern is qualitatively similar to that in terrestrial basalts thought to have been formed by small degrees of partial melting. Of several partial melting models tested, the best match to the REE patterns is provided by one involving ~2–4% partial melting of a source containing low REE abundances. It appears that the light REE enrichment is not associated with the hypothetical silica enriched igneous phase.Since numerous properties separate mesosiderite silicates from howardites, it is clear that they are not composed of precisely the same material. Whether or not they originated on the same parent body is unresolved. If parent body regoliths were mixed vertically and horizontally on a planet-wide basis, then separate bodies would be required. 相似文献
12.
Recent lifetime measurements on excited electronic states of neutral silicon (Beckeret al., Phys. Lett. In press, 1980) lead to a reassessment of widely used experimental transition probabilities Garz, Astron. Astrophys., 26, 471–477, 1973 of Si I lines. This translates into a 25% downward revision of the Si abundance determined from the solar spectrum.A solar atomic ratio, Si/Ca = 15.5 is inferred. This value coincides with that found in carbonaceous chondrites, but contrasts with ordinary and enstatite chondrites. 相似文献
13.
14.
In three brecciated meteorites, Bencubbin, Cumberland Falls and Plainview, the oxygen isotopic compositions of different rock types within each meteorite were determined to seek genetic relationships between them. In all cases the isotopic compositions are not consistent with derivation from a single parent body. There is no evidence that chondrites and achondrites could be derived from a common parent body. The chondritic inclusions in Bencubbin and Cumberland Falls cannot be identified with any of the ordinary chondritic meteorites. The carbonaceous chondritic fragments in Bencubbin are smilar to, but not identical with, C2 meteorites. The achondritic portion of Bencubbin has a very unusual isotopic composition, which, along with its close relative Weatherford, sets it in a class distinctly apart from other achondrites. Lithic fragments in brecciated meteorites provide a wider range of rock types than is represented by known macroscopic meteorites. Collisions between some meteorite parent bodies were of sufficiently low velocity that fragments of both are preserved in breccias. 相似文献
15.
Jean-Alix Barrat Akira Yamaguchi Richard C. Greenwood Claire Bollinger Marcel Bohn Ian A. Franchi 《Geochimica et cosmochimica acta》2009,73(19):5944-5958
The howardite–eucrite–diogenite (HED) achondrites are a group of meteorites that probably originate from the asteroid Vesta. Howardites are complex polymict breccias that sometimes contain, in addition to various rock debris, impact melt glasses which show an impressive range of compositions. In this paper we report on the geochemistry and O isotopes of a series of 6 Saharan polymict breccias (4 howardites and 2 polymict eucrites), and on the trace element abundances of high-K impact spherules found in two of them, Northwest Africa (NWA) 1664 and 1769, which are likely paired.The high-K impact spherules found in the howardites NWA 1664 and NWA 1769 display remarkable trace element patterns. Compared to eucrites or howardites, they all show prominent enrichments in Cs, Rb, K, Li and Ba, strong depletion in Na, while the REE and other refractory elements are unfractionated. These features could not have been generated during impact melting of their host howardites, nor other normal HED target materials. The involvement of Na-poor rocks, and possibly rocks of granitic composition, appears likely. Although these lithologies cannot be well constrained at present, our results demonstrate that the surface of Vesta is certainly more diverse than previously thought. Indeed, despite the large number of available HED meteorites (about 1000 different meteorites), the latter are probably not sufficient to describe the whole surface of their parent body. 相似文献
16.
The mineral phases including olivine, orthopyroxene, clinopyroxene, troilite, nickel-iron, plagioclase, chromite and the phosphates were separated from several meteorites. These were a hypersthene chondrite (Modoc), a bronzite chondrite (Guareña), an enstatite chondrite (Khairpur), and two eucrites (Haraiya and Moore County); diopside was separated from the Nakhla achondrite. The purified minerals were analyzed for trace and minor elements by spark source mass spectrometry and instrumental neutron activation analysis. On the meteorites examined our results show that Co, Ni, Cu, Ge, As, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt and Au are entirely or almost entirely siderophile; Na, Rb, Sr, Y, Ba and the rare earth elements lithophile; Se chalcophile. The transition elements So, Ti, V, Cr and Mn are lithophile in most stony meteorites, but show chalcophile affinities in the enstatite chondrites (and enstatite achondrites), as do Zn, Zr and Nb. In the ordinary chondrites Ga shows both lithophile and siderophile affinities, but becomes entirely siderophile in the enstatite chondrites. Molybdenum and tellurium show strong siderophile and weaker chalcophile affinity. The lithophile elements are distributed among the minerals according to the crystallochemical factors, the most effective controlling factor being ionic size. 相似文献
17.
Matthieu Gounelle Cécile Engrand Philip A. Bland Michael E. Zolensky Jean Duprat 《Geochimica et cosmochimica acta》2005,69(13):3431-3443
We have measured the hydrogen isotopic composition (D/H ratios) of the water from 13 carbonaceous chondritic microclasts (CCMs, size <1 mm) trapped in two howardites (Kapoeta and Yamato-793497) early in the evolution of Solar System. The division into tochilinite-rich; magnetite-rich, olivine-poor; magnetite-rich, olivine-rich CCM types is corroborated by the hydrogen isotopic compositions. Both mineralogy and hydrogen isotopic compositions demonstrate that tochilinite-rich CCMs represent CM2 chondritic matter. In contrast, there is no good match between the isotopic and mineralogical properties of the magnetite-rich CCMs and the known groups of carbonaceous chondrites, suggesting that magnetite-rich CCMs represent a new kind of chondritic matter, not yet sampled in meteorite collections. This demonstrates that the view of the asteroid belt revealed by the collection of meteorites is incomplete. The study of (micro)clasts offers a unique opportunity to better decipher the nature and relative abundance of asteroids.The average hydrogen isotopic composition of water belonging to CCMs, D/H = (152.0 ± 4.8) × 10−6 (1σm), is similar to that of Antarctic micrometeorites (AMMs), D/H = (161.2 ± 3.8) × 10−6 (1σm). The similarity, in terms of mineralogy and hydrogen isotopic composition, between CCMs and AMMs demonstrates that the composition of the micrometeorites has not been modified over the whole history of the Solar System. It indicates that the composition of the micrometeorite flux onto Earth has been, and is, dominated by a mixture of CM2-like; magnetite-rich, olivine-poor; magnetite-rich, olivine-rich carbonaceous chondritic matter exemplified by CCMs found in howardites. Because CCMs have not suffered atmospheric entry, they provide an abundant source of pristine micrometeorites.The average D/H ratio of the whole population of CCMs is identical within errors to that of the Earth (149 ± 3 × 10−6). The match between the CCMs D/H ratio and that of the Earth is especially remarkable because 1) three different populations of CCMs are needed to make the D/H ratio of the Earth; 2) there is no single carbonaceous chondrite group for which a similar match exists. This observation suggests that CCMs population might be representative of the late veneer agent(s) that delivered water to the Earth. 相似文献
18.
The possibility of shock wave-induced interaction between meteoritic iron was estimated based on the results of experiments on the shock wave loading of mixtures of kamacite from the Sikhote Alin iron meteorite with quartz, albite, oligoclase, enstatite, olivine, and serpentine. The experimental samples were then examined with the application of optical microscopy, microprobe analysis, and M?ssbauer spectroscopy. As a result of shock wave load, the metal was proved to become enriched in Si, while the quartz, albite, and oligoclase melted glasses acquired bivalent Fe ions. The products of our experiments with quartz and feldspar mixtures with kamacite were determined to contain paramagnetic metallic iron, and the surroundings of iron atoms in the silicate constituent of the olivine and enstatite mixtures with kamacite become locally more heterogeneous. Our results indicate that shock waves induce redox reactions between Fe and silicates according to the scheme 2Fe+2 + Si+4 = 2Fe+2 + Si0, where Fe0 and Si0 are iron and silicon in metal and Fe+2 and Si+4 are iron and silicon in the sillimanite matrix. 相似文献
19.
Edward R.D. Scott 《Geochimica et cosmochimica acta》1973,37(10):2283-2294
Taenite fields when etched develop a cloudy brown rim with approximate compositional limits of 25 and 40 per cent Ni. In iron meteorites this cloudy zone is only a few microns wide, with a sharp, high-Ni edge about 1 μm from the kamaciteinterface and a diffuse edge several microns from the central plessite. It is always present in irons unless the meteorite has been cosmically or terrestrially reheated.X-Ray and electron diffraction of grains scratched from exceptionally large areas of cloudy taenite in the mesosiderite Estherville show that this etching zone contains a fine exsolution of kamacite. Electron microscopy reveals a cellular structure with kamacite walls surrounding taenite volumes about 1000 Å in diameter; about one-third of the total volume is kamacite. Electron diffraction from a thin foil of Tazewell indicates that for several microns the cloudy border consists of a single crystal of kamacite interpenetrating a single crystal of taenite.Detailed electron-probe investigations of taenite in Estherville show that there is a step in the M-shaped Ni profile at the sharp, high-Ni edge of the cloudy region, the Ni dropping suddenly from approximately 45 to 42 per cent. It is proposed that exsolution in the cloudy region effectively froze in the Ni profile at that temperature. On subsequent cooling only the clear outer taenite continued to equilibrate with the kamacite matrix producing the kink in the M profile.Cloudy taenite is therefore a variety of plessite differing from the usual varieties in that it forms at lower temperatures in areas much richer in Ni, and the morphology is not crystallographically oriented. Its absence can provide a sensitive indication of reheating. 相似文献
20.
Abdelmadjid Seddiki Bertrand Moine Jean Yves Cottin Jérôme Bascou Marguerite Godard François Faure Michèle Bourot-Denise Nacera Remaci 《Arabian Journal of Geosciences》2013,6(9):3175-3184
NWA2268 is a polymict eucrite discovered in the Sahara, at southwest Algeria, close to the region of Tindouf. This meteorite weighs 65 g and presents a thin black fusion crust. The rock is fine- to medium-grained breccia and contains mineral fragments of plagioclases, pyroxenes, spinel, olivine and silica. The rock contains some basaltic fragments with sub-ophitic or cumulative textures, constituted by plagioclases and exsolved pigeonite. Pyroxferroite grains are present and locally destabilised in an association of hedenbergite, fayalite and silica. It also presents unequilibrated eucritic clast with heterogeneous pyroxenes and plagioclases compositions. Pyroxenes in the all of the other clasts have equilibrated composition, with exolved pigeonites with augite lamellaes. This polymict eucrite contains also partially devitrified glass that represents impact melts linked to impact event. None recrystallization of this glass confirms a lack of post-brecciation metamorphism. Diogenitic fragments are less abundant than 10 %. The oxygen isotopic composition of NWA2268 is Δ17O (?0.43). This meteorite is interpreted as belonging to the HED group attributed to the 4-Vesta asteroid. 相似文献