首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract

The onset of convection in a cylindrical fluid annulus is analyzed in the case when the cylindrical walls are rotating differentially, a temperature gradient in the radial direction is applied, and the centrifugal force dominates over gravity. The small gap approximation is used and no-slip conditions on the cylindrical walls are assumed. It is found that over a considerable range of the parameter space either convection rolls aligned with the axis of rotation or rolls in the perpendicular (azimuthal) direction are preferred. It is shown that by a suitable redefinition of parameters, results for finite amplitude Taylor vortices and for convection rolls in the presence of shear can be applied to the present problem. Weakly nonlinear results for transverse rolls in a Couette flow indicate the possibility of subcritical bifurcation for Prandtl numbers P less than 0.82. Heat and momentum transports are derived as functions of P and the problem of interaction between transverse and longitudinal rolls is considered. The relevance of the analysis for problems of convection in planetary and stellar atmospheres is briefly discussed.  相似文献   

2.
Some consequences arising from the superposition of flows of two different kinds or scales in a non-Newtonian mantle are discussed and applied to the cases mantle convection plus postglacial rebound flow as well as small- plus large-scale mantle convection. If the two flow types have similar magnitude, the apparent rheology of both flows becomes anisotropic and the apparent viscosity for one flow depends on the geometry of the other. If one flow has a magnitude significantly larger than the other, the apparent viscosity for the weak flow is linear but develops direction-dependent variations about a factorn (n being the power exponent of the rheology). For the rebound flow lateral variations of the apparent viscosity about at least 3 are predicted and changes in the flow geometry and relaxation time are possible. On the other hand, rebound flow may weaken the apparent viscosity for convection. Secondary convection under moving plates may be influenced by the apparent anisotropic rheology. Other mechanisms leading to viscous anisotropy during shearing may increase this effect. A linear stability analysis for the onset of convection with anisotropic linear rheology shows that the critical Rayleigh number decreases and the aspect ratio of the movement cells increases for decreasing horizontal shear viscosity (normal viscosity held constant). Applied to the mantle, this model weakens the preference of convection rolls along the direction of plate motion. Under slowly moving plates, rolls perpendicular to the plate motion seem to have a slight preference. These results could be useful for resolving the question of Newtonian versus non-Newtonian or isotropic versus anisotropic mantle rheology.  相似文献   

3.
The discrete scale spectrum of the convective flows observed on the Sun has not yet received a convincing explanation. Here, an attempt is made to find conditions for the coexistence of convective flows on various scales in a horizontal fluid layer heated from below, where the thermal diffusivity varies with temperature in such a way that the static temperature difference across a thin sublayer near the upper surface of the layer is many times larger than the temperature variation across the remainder of the layer. The equations of two-dimensional thermal convection are solved numerically in an extended Boussinesq approximation, which admits thermal-diffusivity variations. The no-slip conditions are assumed at the lower boundary of the layer; either no-slip or free-slip conditions, at the upper boundary. In the former case, stable large-scale rolls develop, which experience small deformations under the action of small structures concentrated near the horizontal boundaries. In the latter case, the flow structure is highly variable, different flow scales dominate at different heights, the number of large rolls is not constant, and a sort of intermittency occurs: the enhancement of the small-scale flow component is frequently accompanied by the weakening of the large-scale one, and vice versa. The scale-splitting effects revealed here should manifest themselves in one way or another in the structure of solar convection.  相似文献   

4.
朱涛  马宗晋  冯锐 《地球物理学报》2006,49(5):1347-1358
建立了三维黏度扰动下的变黏度地幔对流模型,并提供了在引入地幔的三维地震波速度结构下相应的求解方法. 依此反演了瑞利数Ra = 106时,两种不同边界条件下的极、环型场对流图像,这有助于深化对地幔物质流动和大地构造运动的深部动力学过程的认识和理解. 研究结果表明,不但地幔浅部的极型场对流图像显示出了与大地构造运动的相关性并揭示了其深部动力学过程,更重要的是,地幔浅部的环型场对流图像首次为我们认识和理解板块构造的水平与旋转运动提供了重要的信息:环型场速度剖面中在赤道附近存在一条大致南东东—北西西向的强对流条带,可能与环赤道附近大型剪切带的形成相关,进而表明可能是该带强震发生的深部动力学背景;在南北半球存在的旋转方向相反的对流环表明它们整体上可能存在差异旋转.  相似文献   

5.
Under certain conditions the concentration of a substance moving in a stochastic flow field is described by the stochastic convection equation. A numerical method yielding the mean solution and variance of the two-dimensional problem is described here. First, the differential operator is replaced by a discrete linear operator based on finite differences. The resulting system of stochastic equations is then replaced by a system of equations whose solution is the mean concentration. The variance of the concentration can then be calculated. In addition, and example is given for which an approximate analytical solution and its variance is known. The numerical method is applied to the example and results compared to the approximate analytical solution and variance.  相似文献   

6.
Abstract

The linear stability analysis of Hathaway, Gilman and Toomre (1979) (hereafter referred to as Paper I) is repeated for Boussinesq fluids with viscous and thermal diffusion. As in Paper I the fluid is confined between plane parallel boundaries and the rotation vector is oblique to gravity. This tilted rotation vector introduces a preference for roll-like disturbances whose axes are oriented north-south; the preference is particularly strong in the equatorial region. The presence of a latitudinal temperature gradient produces a thermal wind shear which favors axisymmetric convective rolls if the gradient exceeds some critical value. For vanishingly small diffusivities the value of this transition temperature gradient approaches the inviscid value found in Paper I. For larger diffusivities larger gradients are required particularly in the high latitudes. These results are largely independent of the Prandtl number. Diffusion tends to stabilize the large wavenumber rolls with the result that a unique wavenumber can be found at which the growth rate is maximized. These preferred rolls have widths comparable to the depth of the layer and tend to be broader near the equator. The axisymmetric rolls are similar in many respects to the cloud bands on Jupiter provided they extend to a depth of about 15,000 km.  相似文献   

7.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell heated from below and within have been carried out with a nonlinear, three-dimensional, time-dependent pseudospectral code. The investigated phenomena include the sequence of transitions to chaos and the differential mean zonal rotation. At the fixed Taylor number T a =106 and Prandtl number Pr=1 and with increasing Rayleigh number R, convection undergoes a series of bifurcations from onset of steadily propagating motions SP at R=R c = 13050, to a periodic state P, and thence to a quasi-periodic state QP and a non-periodic or chaotic state NP. Examples of SP, P, QP, and NP solutions are obtained at R = 1.3R c , R = 1.7 R c , R = 2R c , and R = 5 R c , respectively. In the SP state, convection rolls propagate at a constant longitudinal phase velocity that is slower than that obtained from the linear calculation at the onset of instability. The P state, characterized by a single frequency and its harmonics, has a two-layer cellular structure in radius. Convection rolls near the upper and lower surfaces of the spherical shell both propagate in a prograde sense with respect to the rotation of the reference frame. The outer convection rolls propagate faster than those near the inner shell. The physical mechanism responsible for the time-periodic oscillations is the differential shear of the convection cells due to the mean zonal flow. Meridional transport of zonal momentum by the convection cells in turn supports the mean zonal differential rotation. In the QP state, the longitudinal wave number m of the convection pattern oscillates among m = 3,4,5, and 6; the convection pattern near the outer shell has larger m than that near the inner shell. Radial motions are very weak in the polar regions. The convection pattern also shifts in m for the NP state at R = 5R c , whose power spectrum is characterized by broadened peaks and broadband background noise. The convection pattern near the outer shell propagates prograde, while the pattern near the inner shell propagates retrograde with respect to the basic rotation. Convection cells exist in polar regions. There is a large variation in the vigor of individual convection cells. An example of a more vigorously convecting chaotic state is obtained at R = 50R c . At this Rayleigh number some of the convection rolls have axes perpendicular to the axis of the basic rotation, indicating a partial relaxation of the rotational constraint. There are strong convective motions in the polar regions. The longitudinally averaged mean zonal flow has an equatorial superrotation and a high latitude subrotation for all cases except R = 50R c , at this highest Rayleigh number, the mean zonal flow pattern is completely reversed, opposite to the solar differential rotation pattern.  相似文献   

8.
基于基追踪弹性阻抗反演的深部储层流体识别方法   总被引:4,自引:2,他引:2       下载免费PDF全文
深部储层地震资料通常照明度低、信噪比低、分辨率不足,尤其是缺乏大角度入射信息,对深部储层流体识别存在较大影响.Gassmann流体项是储层流体识别的重要参数,针对深层地震资料的特点,本文首先在孔隙介质理论的指导下,推导了基于Gassmann流体项与剪切模量的两项AVO近似方程.通过模型分析,验证了该方程在小角度时与精确Zoeppritz方程误差很小,满足小角度入射条件下的近似精度要求.然后借助Connolly推导弹性阻抗的思想,推导了基于Gassmann流体项与剪切模量的两项弹性阻抗方程.针对深部储层地震资料信噪比差的特点,利用奇偶反射系数分解实现了深部储层基追踪弹性阻抗反演方法,最后提出了基于基追踪弹性阻抗反演的Gassmann流体项与剪切模量的求取方法,并将提取的Gassmann流体项应用于深部储层流体识别.模型测试和实际应用表明该方法稳定有效,具有较好的实用性.  相似文献   

9.
Thermal convection resulting from vertical temperature gradients in porous media is analyzed. The effect of heat dispersion is taken into account. It is found that heat dispersion increases the thermal stability of the flow field and may inhibit the appearance of convection currents, which would appear if dispersion effects are omitted.The longitudinal as well as the lateral dispersivities affect the thermal stability and the dimensions of the convection cells. As a result of the convection currents the horizontal streamlines in the steady state are distorted. The thermal convection exhibits internal waves in the field.  相似文献   

10.
Abstract

Arnold's (1965a) method is used to investigate the stability of a stationary, nonparallel, plane flow, with horizontal shear, to three-dimensional nondivergent disturbances in a Boussinesq fluid. It is shown that, if the fluid is statically stable, the Rayleigh condition is not sufficient to insure inertial stability to all disturbance modes. For channel flow it is possible to establish the sufficiency condition for stability to some of these modes.  相似文献   

11.
Abstract

A study is made of the nonlinear stability of a weakly supercritical zonal shear flow in the β-plane approximation. The dynamics of initially small disturbances are examined. The main nonlinear effects are associated with the rearrangement of the critical layer. It is shown that as the wave grows in amplitude, linear regimes of the critical layer (viscous and nonstationary) change over to a nonlinear regime while the exponential law of disturbance growth becomes a power-law.  相似文献   

12.
ABSTRACT

The present study aims to link the dynamics of geophysical fluid flows with their vortical structures in physical space and to study the transition of these structures due to the control parameters. The simulations are carried in a rectangular box filled with liquid gallium for three different cases, namely, Rayleigh–Bénard convection (RBC), magnetoconvection (MC) and rotating magnetoconvection (RMC). The physical setup and material properties are similar to those considered by Aurnou and Olson in their experimental work. The simulated results are validated with theoretical results of Chandrasekhar and experimental results of Aurnou and Olson. The results are also topologically verified with the help of Euler number given by Ma and Wang. For RBC, the onset is obtained at Ra greater than 1708 and at this Ra, the symmetric rolls are orientated in/along a horizontal axis. As the value of Ra increases further, the width of the horizontal rolls starts to amplify. It is observed that these two-dimensional rolls are nothing but the cross-sections of three-dimensional (3D) cylindrical rolls with wave structures. When the vertically imposed magnetic field is added to RBC, the onset of convection is delayed due to the effect of Lorentz force on the thermal buoyancy force. The presence of 3D rectangular structures is highlighted and analysed. When the magnetically influenced rectangular box rotates about vertical axis at low rotation rates in magnetoconvection model, the onset of convection gets further delayed by magnetic field, which is in general agreement with the theoretical predictions. The critical Ra increases linearly with magnetic field intensity. Coherent thermal oscillations are detected near the onset of convection, at moderate rotation rates.  相似文献   

13.
This paper is a review of the theoretical and observational evidence bearing on the magnitude of the shear stress which acts on the base of a lithospheric plate. Estimates based on the viscosity of the upper mantle do not yield useful limits. Arguments based on the thermal stability of the upper mantle indicate that the basal shear stress is no larger than a few bars. An indirect measurement of the rheology and shear stress can be made by studying the diffusion of stress and displacement following a large decoupling earthquake. When applied to the 1965 Rat Island Earthquake, this method yields a basal shear stress of about 2 bars. These results indicate that for small plates the forces produced by basal shear stress are probably small in comparison with forces acting on plate boundaries. To a first approximation, the smaller plates act as if they were decoupled from the mantle below. These stress estimates lead to a model in which the motion of the smaller lithospheric plates is governed almost entirely by the forces acting on their edges. Forces due to basal shear stress may be comparable to forces acting on the edges of large lithospheric plates. Thus, complete decoupling may not be a good approximation for such plates.  相似文献   

14.
上地幔变黏度小尺度对流的数值研究   总被引:6,自引:4,他引:6       下载免费PDF全文
基于二维模型,利用有限元方法,研究上地幔-岩石圈系统的变黏度小尺度对流. 考虑该系统的黏度随温度以指数形式变化,数值结果表明,当黏度随温度变化较剧烈时,由于低温高黏度,系统的最上部物质不参与对流,系统发育形成一个类似于岩石圈的静止盖层. 计算表面热流、地形起伏及重力异常与对流格局有较好的相关性,高热流、上升地形对应于对流的上升区,反之低热流、下降地形与对流的下降区对应.  相似文献   

15.
Taylor dispersion in a two-dimensional (2D) stratified velocity field describes a transition, called relaxation, from convective behaviour for short times, towards Fickian behaviour for large times and is partially reversible upon reversal of the flow direction. In 2D the physics are assumed to be governed by the unidirectional convection diffusion equation (2D uCDE). The approximate height-averaged 1D Generalised Telegraph Equation (GTE) catches an essential part of the longitudinal spreading. Contrary to the 1D Fickian approach, it explicitly accounts for the transient reversible nature [Camacho J. Purely global model for Taylor dispersion. Phys Rev E 1993/2;48(1); Berentsen CWJ, Verlaan ML, van Kruijsdijk CPJW. Upscaling and reversibility of Taylor dispersion in heterogeneous porous media. Phys Rev E 2005;71:046308].  相似文献   

16.
Abstract

The model equations describing two-dimensional thermohaline convection of a Boussinesq fluid in a rotating horizontal layer are known to support multiple instabilities, depending on the values of certain control parameters (Arneodo et al., 1985). Most of these multiple instabilities have already been studied for double or triple diffusive convection, where behaviours ranging from simple steady to irregular motions have been found. Here we consider the one remaining bifurcation mentioned by Arneodo et al. (1985): the interaction between a steady and an oscillatory convection roll when the linear spectrum for a single wavenumber comprises one zero and one pair of purely imaginary eigenvalues. The method of centre manifolds and normal forms is used to derive evolution equations for the amplitudes of the convection rolls close to bifurcation and the behaviours associated with the equations is discussed.  相似文献   

17.
Various aspects of the cumulus convection problem, such as the creation of shallow cumulus by cellular convection in the surface layer of the atmosphere, the formation of cloud rolls along the direction of the mean wind and their amplitude modulation, the development of the individual cumulus and their penetration into the inversion layer and the initiation of the squall line type disturbances, are discussed.  相似文献   

18.
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA––A model for saturated–unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4π2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature.  相似文献   

19.
20.
Abstract A numerical model (NEWVAR) to simulate the transient movement of a discrete interface between salt water and fresh water has been developed. NEWVAR is designed to allow the analysis of a regional two-dimensional ground-water flow in coastal aquifers. The numerical solution permits the prediction of both regional fresh-water levels and two-dimensional fresh-water/salt-water interface by using nested square meshes.
The numerical solution is based on the finite-difference method; the Gauss-Jordan direct method is used for solving steady- and unsteady-state linear equations. Different procedures are used to avoid numerical difficulties in the transient position of the interface toe for two-dimensional areal flow.
The numerical solution was tested against the analytical ones for the cases of an advancing interface and of a floating fresh-water lens over sea water. These tests showed good agreement, thus verifying the finite-difference approximation. The results of an application of this model to a real aquifer are discussed in a companion paper entitled: "A Compatible Single-Phase/Two-Phase Numerical Model 2. Application to a Coastal Aquifer in Mexico."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号