首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
In a future warmer world, peatlands may change from a carbon sink function to a carbon source function. This study tracks changes in water-extractable organic matter (WEOM) after 1 year of in situ experimental warming using open top chambers (OTCs). WEOM was studied in the upper peat layers (0–10 cm) through analysis of water-extractable organic carbon (WEOC), stable C isotopic composition (δ13C), specific UV absorbance at 280 nm and sugar composition of cores taken from an open bog (DRY sites) and a transitional poor fen (WET sites). At the DRY sites, the impact of OTCs was weak with respect to WEOM parameters, whereas at the WET sites, the air warming treatment led to a decrease in peat water content, suggesting that the supply of heat by OTCs was used mainly for evapotranspiration. OTCs at the WET sites also induced a relative enrichment at the surface (0–5 cm depth) of aliphatic and/or aromatic compounds with concomitant decrease in WEOC, as a result of decomposition. On the contrary, WEOC and sugar content increased in the deeper peat layer (7.5–10 cm depth) probably as a result of increased leaching of phenolic compounds by roots, which then inhibits microbial activity. The different response to experimental warming at DRY and WET sites suggests that the spatial variability of moisture is critical for understanding of the impact of global warming on the fate of OM and the carbon cycle in peatlands.  相似文献   

2.
The concentration and composition of lignin-derived phenols, which are often used as biomarkers for terrigenous organic matter (OM) inputs, were examined in North Atlantic Ocean sediments from IODP core U1302A (50°9.985′N, 45°38.271′W, 3568 m water depth), Orphan Knoll, 650 km NE of St. John’s, Newfoundland, Canada for the period of ca. 1100–810 ka BP. Lignin-derived phenols were extracted from sediments using CuO oxidation which yielded eight characteristic phenols. The majority of sediments have low syringyl phenol to vanillyl phenol (S/V) ratios and high cinnamyl phenol to vanillyl phenol (C/V) ratios, suggesting predominant concentrations of gymnosperm-derived organic matter inputs from adjacent continents (most likely eastern Canada and possibly southern Greenland). The S/V values were lower for the period of ca. 958–840 ka BP relative to ca. 1090–1078, 1042–958 and 840–818 ka BP, indicating fluctuations in the proportion of angiosperm- and gymnosperm-derived lignin delivery to the ocean. The greater fraction of gymnosperms for the period of 958–840 ka BP likely reflects the response of vegetation in source regions to climate cooling in the early part of the mid-Pleistocene. Lignin-derived phenol concentrations also displayed high variability during the investigated period, which did not show positive correlations with magnetic susceptibility or Gamma Ray Attenuation density. Considering that a fundamental climate change (41–100 ka cyclicity) occurred within the mid-Pleistocene, large variations in abundance and composition of lignin-derived phenols in core U1302A is likely indicative of dynamic environmental conditions, reflected by the variability in both concentrations and types of vegetation on adjacent continents and/or different mechanisms to transport terrigenous organic matter to the deep ocean.  相似文献   

3.
Two sediment cores of up to 550 cm length from an intertidal flat of the German Wadden Sea near the island of Spiekeroog were investigated for the quantity and composition of fossil organic matter (OM). The lowermost parts of the cores are dominated by grey mud of a salt marsh facies containing mainly terrestrial OM estimated to account for 60–75% of the total OM, based on δ13C values and the ratio of short to long chain n-alkanols. The terrigenous origin of the dominant fraction is indicated, among others, by high proportions of C29 sterols and long chain n-alkanes typical of plant waxes. Coarse shell beds overlying the grey mud at 2–2.5 m depth represent a flooding and erosion event possibly related to heavy storm floods in the Middle Ages. Within the intertidal sand-dominated sediments in the upper parts of the cores total organic carbon (TOC) contents are generally low, ranging from 0.1% to 0.5%, and correlate well with the amount of mud fraction (r2 0.90). At the surface, marine OM has not undergone intense diagenetic alteration and so is the dominant fraction. Eroded peat particles are common throughout most of the sequence and values of the Phragmites peat indicator (PPI) > 5 indicate an origin from reed peat due to a high relative abundance of the n-C24 alkane. Changes in the composition of microbial communities over the depth interval investigated are documented by varying compositions of unsaturated fatty acids with 16 and 18 carbons. Eicosapentaenoic acid (EPA) was detected along the entire cores and indicates the presence of EPA-producing bacterial strains.  相似文献   

4.
A geochemical study of interstitial water and solid phase sediment using bulk concentration and geochemical partitioning was undertaken in vertical sediment profiles to trace diagenetic processes of lead (Pb) in hypersaline salt marsh sediments. In addition, we measured the stable isotopic composition of Pb in order to distinguish its input sources. Concentrations of Pb increased from low or background values in the bottommost layer (< 60 cm depth), followed by fluctuations in the middle layer (20–60 cm) and peak values in the subsurface layer (3–5 cm). Pb associated to reactive fractions (e.g. OM, Fe–Mn oxyhydroxides and carbonates) accounted for 60% of that initially deposited. Stable Pb isotope data (206Pb/207Pb and 207Pb/208Pb) suggested that most of the Pb in the upper sediments (1.204 ± 0.002 and 2.469 ± 0.007) is still derived from the leaded gasoline combustion (1.201 ± 0.006 and 2.475 ± 0.005). Profile of dissolved Pb was related to those for ammonium, phosphates and dissolve Fe and Mn, which reveals the influence of the diagenetic reactions on the Pb behavior. OM, Fe–Mn oxyhydroxides and the sulfide minerals play a significant role for mobilizing and trapping the Pb. Metal mobilization was calculated considering an advective–diffusive system. The advective process constitutes the dominant mechanism of Pb mobilization. A low diffusive outflux with respect to the Pb mobilization rate suggested that most of the released Pb is retained in the sediments. Authigenic oxides precipitated at the oxic–suboxic layers (0–4 cm depth) and authigenic sulfide minerals formed Pb in the anoxic layers (7–20 cm depth) constituting the main scavengers for Pb that is diagenetically released. This retention has significant environmental implications because it reduces the availability and toxicity of Pb to biota, including humans.  相似文献   

5.
The distribution and nature of sedimentary organic matter (OM) have been examined in sediment cores collected from the lower reaches, including estuary, of the Godavari River in order to understand sedimentation patterns, sources, and diagenesis of OM. The samples were analyzed for organic carbon (Corg), total nitrogen, amino acids and hexosamines. The observed irregular trends in Corg distribution with depth indicate the unstable nature of bed sediment in the lower reaches of the river. Yet, in the lower estuarine region, regular trends in Corg distribution with depth reflect the deposition of sediment. The atomic ratio of Corg and total nitrogen (C/N; 10.5–16.1) also supported this observation. The distribution of amino acids and diagenetic indicators (β-ala+γ-aba mol.%, AA/HA and Glc-NH2/Gal-NH2) in individual cores revealed the post-depositional changes in the OM. In the core sediment from the lower reaches, there was no clear cut trend in amino acid content with depth. In the estuarine region, however, amino acid content was very low (50.5 and 186.5 μg g−1) in the upper layers compared to that in the lower layers (558.5 and 1099.3 μg g−1). Reactivity index (range 0.3–3.7) revealed that OM in the upper few centimeters, especially in the lower estuarine region, was more reactive relative to that in the deeper layers.  相似文献   

6.
It is essential to have suitable tools able to trace the fate of manure organic matter in the environment to assess whether manure disposal on the soils of catchments could affect the organic quality of rivers. Sterol compounds – mainly expressed as C29 + 28/C27 and 5β/C27 ratios – have been shown to be specific molecular tracers of pig, dairy and poultry manures in soils. The objective of this study was to measure C29 + 28/C27 and 5β/C27 ratios in five Brittany rivers (Elorn, Yar, Léguer, Min Ran and Couesnon) draining agricultural catchments receiving massive annual inputs of pig, poultry and dairy manures and compare these ratios with ratios published for enriched soils and manure samples. The particulate organic fractions from the studied rivers yielded steroid signatures typical of animal manures. More specifically, a stanol compound diagnostic of pig slurry – the 5β-stanol known as coprostanol – was found to be very widespread, with particularly high concentrations in one of the rivers (Elorn). The C29 + 28/C27 and 5β/C27 ratios of the particulate fractions of the rivers were compared with ratios measured directly in pig, dairy and poultry manure samples, as well as with the breeding activities on river catchments. These comparisons show that the steroid profiles of the five investigated rivers correlate closely with the types of manure (i.e. pig, poultry or dairy) spread on soils in their catchments. For instance, the C29 + 28/C27 and 5β/C27 ratios in the Elorn river are similar to the values typical of pig slurry (e.g. 5β/C27 > 4); compared with other catchments, the soils in this area receive by far the largest amount of pig slurry. By contrast, the Yar river drains a catchment receiving only poultry and dairy manures, and its soils exhibit C29 + 28/C27 and 5β/C27 ratios similar to those of dairy and poultry manures (e.g. 5β/C27 ∼ 1). Thus, this study indicates that the organic quality of rivers is modified in catchments where there is intense manure spreading on soils. It also provides evidence that rivers draining areas receiving different manure types may exhibit differences in the long-term evolution of their OM content. Indeed, two of the investigated river catchments receive dominantly dairy and poultry manure, and exhibit clear long-term upward trends in OM. On the other hand, one catchment receiving high proportions of pig slurry clearly shows a long-term downward trend in OM contents. A survey of the literature shows that the relative amount of OM and N received by soils in agricultural catchments could be the key parameter in determining the direction of the long-term OM trend of the river, rather than the absolute amount and/or type of manure that is applied to the soil. In any case, the present study suggests that sterol/stanol compounds may be of diagnostic value in determining whether a stream or a river is undergoing contamination by manure-derived organic matter.  相似文献   

7.
The Pichavaram mangrove ecosystem is located between the Vellar and Coleroon Estuaries in south-eastern India. To document the spatial-depth-based variabilities in organic matter (OM) input and cycling, five sediment cores were collected. A comparative study was carried out of grain-size composition, pore water salinity, dissolved organic C (DOC), loss-on-ignition (LOI), elemental ratios (C/N and H/C), pigments (Chl a, Chl b, and total carotenoids), and humification indices. Sand is the major fraction in these cores ranging from 60% to 99% followed by silt and clay; cores from the estuarine margin have high sand content. In mangrove forests, pore-water DOC concentrations are high (32 ± 14 mg L−1), whereas salinity levels are low (50 ± 5.5‰). Likewise, LOI, organic C and N, and pigment concentrations are high in mangroves. OM is mainly derived from upstream terrestrial matter and/or mangrove litter, and marine OM. The humification indices do not vary significantly with depth because of rapid OM turnover. The bulk parameters indicate that the Vellar and Coleroon Estuaries are more affected by anthropogenic processes than mangrove forests. Finally, greater variability and sometimes lack of specific trends in bulk parameters implies that the 2004 tsunami caused extensive mixing in sediments.  相似文献   

8.
The Sarliève marsh in the Limagne plain, in the heart of the French Massif Central, functioned as an endorheic lake during the Late Glacial and the Early and Middle Holocene. During the Late Boreal and the Atlantic it experienced drastic lowering of the water level as a result of dry and warm climatic episodes. Then, pre-evaporitic conditions triggered the deposition of sediment rich in organic matter (OM) and in carbonates including dolomite. Fifty-one samples from a ca. 1.8 m sediment core section covering the period were analysed using Rock–Eval pyrolysis and gas chromatography–mass spectrometry (GC–MS). Throughout the interval, the OM content remained notable to high [up to 13.35% total organic carbon (TOC)] and of good quality as indicated by low oxygen index (OI) values (<200 mg CO2 g−1 TOC) and high hydrogen index (HI) values (160–660 mg HC g−1) which, as a rule, increased with increasing TOC content.In contrast to the acid fractions, which sometimes contained notable proportions of n-C16 or n-C18 fatty acids (FAs; analysed as the methyl esters, FAMEs), the neutral fractions were almost devoid of low molecular weight compounds. The latter were probably biodegraded during early diagenesis. Conversely, high molecular weight compounds were abundant in both fractions and were dominated by n-alkanols, n-alkanes, steroids and hopanoids in the neutrals and even numbered FAs and hopanoids in the acid fractions. The hopanoids were dominated by regular bishomohopanoids, accompanied by 2-methylated bishomohopanoids, as well as by unidentified bishomohopanoids with methylation in either the D or E ring. These distributions, typical for bacteria, provide support for previous hypotheses on the contribution of microorganisms to the studied record and for providing conditions for the precipitation and growth of dolomite and other pristine carbonate minerals [Bréheret, J.G., Fourmont, A., Macaire, J.J., Négrel, Ph., 2008. Microbially mediated carbonates in the Holocene lacustrine deposits of the Marais de Sarliève (French Massif Central) testify to the evolution of a restricted environment. Sedimentology 55, 557–578]. The preservation of the compounds was probably ensured by persistent reducing conditions during diagenesis, despite variable climatic conditions and related changes in lake level and sedimentation rate. Comparable distributions of hopanoic acids and hopanols, as well as roughly parallel variation with depth in the corresponding components in both fractions, strongly suggest that all the hopanoids derive from the same microbial precursors, slight shifts in the acid/alcohol ratio being governed by limited changes in redox conditions during early diagenesis.  相似文献   

9.
Suspended sediments (SS) from the Atchafalaya River (AR) and the Mississippi River and surficial sediment samples from seven shallow cross-shelf transects west of the AR in the northern Gulf of Mexico were examined using elemental (%OC, C/N), isotopic (δ13C, Δ14C), and terrigenous biomarker analyses. The organic matter (OM) delivered by the AR is isotopically enriched (∼−24.5‰) and relatively degraded, suggesting that soil-derived OM with a C4 signature is the predominant OM source for these SS. The shelf sediments display OC values that generally decrease seaward within each transect and westward, parallel to the coastline. A strong terrigenous C/N (29) signal is observed in sediments deposited close to the mouth of the river, but values along the remainder of the shelf fall within a narrow range (8-13), with no apparent offshore trends. Depleted stable carbon isotope (δ13C) values typical of C3 plant debris (−27‰) are found near the river mouth and become more enriched (−22 to −21‰) offshore. The spatial distribution of lignin in shelf sediments mirrors that of OC, with high lignin yields found inshore relative to that found offshore (water depth > 10 m).The isotopic and biomarker data indicate that at least two types of terrigenous OM are deposited within the study area. Relatively undegraded, C3 plant debris is deposited close to the mouth of the AR, whereas more degraded, isotopically enriched, soil-derived OM appears to be deposited along the remainder of the shelf. An important input from marine carbon is found at the stations offshore from the 10-m isobath. Quantification of the terrigenous component of sedimentary OM is complicated by the heterogeneous composition of the terrigenous end-member. A three-end-member mixing model is therefore required to more accurately evaluate the sources of OM deposited in the study area. The results of the mixing calculation indicate that terrigenous OM (soil-derived OM and vascular plant debris) accounts for ∼79% of the OM deposited as inshore sediments and 66% of OM deposited as offshore sediments. Importantly, the abundance of terrigenous OM is 40% higher in inshore sediments and nearly 85% higher in offshore sediments than indicated by a two-end-member mixing model. Such a result highlights the need to reevaluate the inputs and cycling of soil-derived OM in the coastal ocean.  相似文献   

10.
Wetland soils from a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central Spain) were studied to characterize the organic matter (OM) and determine its origin and transformation. Cross polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy and mathematical molecular mixing allowed analysis of the organic fraction in terms of six generic components (carbohydrate, protein, lignin, lipid, char and “carbonyl”). Las Tablas is an active carbon sink, with total organic carbon (TOC) content independent of soil OM quality; the TOC content of the upper sediment is 10.0 ± 7.8%. The inorganic carbon content is also high (5.4 ± 3.3%) and is associated mainly with OM of aliphatic character. The OM composition is variable; samples predominantly aliphatic (carbohydrate, lipid and protein) are characteristic of the northern sector, whereas predominantly aromatic samples are typical of the southern Tablas. A strong negative relationship between protein content and lignin content was found, interpreted as a consequence of different proportions of vascular vs. non-vascular (mostly charophyte) litter input. The effect of perturbation is apparent in the extended presence of char, particularly abundant in fire-prone areas. OM quantity and quality do not seem to depend on hydrology (although seasonal flooding is associated with lower TOC wetland soils) or soil characteristics. Dominant vegetation and fire are the main drivers of OM content and composition. Structural carbohydrate, protein and lipid (>60% of total organic fraction) dominate. Widespread anaerobic conditions and the recent character of the sediments could explain the preservation of different fractions of the original detritus composition (due to different vegetation and presence of microbes).  相似文献   

11.
The comprehensive biomarker characteristics from previously undescribed Middle Jurassic clays of Poland are presented. The molecular composition of the organic matter (OM) derived from clays of Aalenian to Callovian age has not changed significantly through time. High relative concentrations of many biomarkers typical for terrestrial material suggest a distinct dominance of OM derived from land plants. Increasing concentrations of C29-diaster-13(17)-enes towards the northern part of the basin indicate an increase in terrestrial input. This terrestrial material would have originated from the enhanced transport of organic matter from land situated at the northern bank of the basin, i.e., the Fennoscandian Shield. The organic matter was deposited in an oxic to suboxic environment, as indicated by relatively low concentrations of C33–C35 homohopanes, moderate to high Pr/Ph ratio values, an absence of compounds characteristic for anoxia and water column stratification, such as isorenieratane, aryl isoprenoids and gammacerane, as well as common benthic fauna and burrows. δ18O measurements from calcitic rostra of belemnites suggest that the mean value of the Middle Jurassic sea-water temperature of the Polish Basin was 13.1 °C. It is suggested that this mirrored the temperature of the lower water column because belemnites are considered here to be necto-benthic. The organic matter from the Middle Jurassic basin of Poland is immature. This is clearly indicated by a large concentration of biomarkers with the biogenic configurations, such as ββ-hopanes, hop-13(18)-enes, hop-17(21)-enes, diasterenes and sterenes. The identification of preserved, unaltered biomolecules like ferruginol, 6,7-dehydroferruginol and sugiol in Protopodocarpoxylon wood samples from these sediments present particularly strong evidence for the presence of immature OM in the Middle Jurassic sediments. Moreover, the occurrence of these polar diterpenoids is important due to the fact that they are definitely the oldest known natural products detected in geological samples.  相似文献   

12.
Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM–EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water–sediment interface of (i) dissolved SO4 promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a major flood event, about 870 t of Zn, 18 t of Cd, 25 t of Pb and 17 t of Cu could be mobilized from the downstream reservoir sediments along the Lot River by resuspension-induced oxidation of sulfide phases. These amounts are equivalent to 13-fold (Cd), ∼6-fold (Zn), 4-fold (Pb) the mean annual inputs of the respective dissolved trace metals into the Gironde estuary.  相似文献   

13.
In a comprehensive study, we compared depositional conditions, organic matter (OM) composition, and organic carbon turnover in sediments from two different depositional systems along the Chilean continental margin: at ∼23° S off Antofagasta and at ∼36° S off Concepción. Both sites lie within the Chilean coastal upwelling system and have an extended oxygen minimum zone in the water column. However, the northern site (23° S) borders the Atacama Desert, while the southern site (36° S) has a humid hinterland. Eight surface sediment cores (up to 30 cm long) from water depths of 126-1350 m were investigated for excess 210Pb (210Pbxs) activity, total organic and total inorganic carbon concentrations (TOC and TIC, respectively), C/N-ratios, organic carbon isotopic compositions (δ13C), chlorin concentrations, Chlorin Indices (CI), and sulfate reduction rates (SRR). Sediment accumulation rates obtained from 210Pb-analysis were similar in both regions (0.04-0.15 cm yr−1 at 23° S, 0.10-0.19 cm yr−1 at 36° S), although total 210Pbxs fluxes indicated that the vertical particle flux was higher at 36° S than at 23° S. We propose that sediment focusing in isolated deposition centers led to high sediment accumulation rates at 23° S. Furthermore, there were no indications for sediment mixing at 23° S, while bioturbation was intense at 36° S. δ13C-values (−24.5‰ to −20.1‰ vs. VPDB) and C/N-ratios (molar, 8.6-12.8) were characteristic of a predominantly marine origin of the sedimentary OM in both investigated areas. The extent of OM alteration in the water column was partly reflected in the surface sediments as chlorin concentrations decreased and C/N-ratios and CI increased with increasing water depth of the sampling site. SRR were lower at 23° S (areal SRR 0.12-0.60 mmol m−2 d−1) than at 36° S (areal SRR 0.82-1.18 mmol m−2 d−1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23° S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004-0.0022 yr−1) showed a good correspondence to kTOC that were derived from the depth profiles of TOC (0.0003-0.0014 yr−1). Both, kSRR and kTOC, reflect differences in OM composition. At 36° S they were related to the degradation state of bulk OM (represented by C/N-ratios), whereas near 23° S they were related to the freshness of a small fraction of labile OM (represented by CI). Our study shows that although rates of organic carbon accumulation were similar in both investigated sites, the extent and kinetics of organic carbon degradation were closely linked to differing depositional conditions.  相似文献   

14.
The stable isotope compositions of organic carbon and nitrogen, the contents of organic carbon and nitrogen and C/N ratios for two cores recovered from the Empakai Crater at water depths of 11 and 20 m are used to document climatic changes in northern Tanzania. Eight 14C AMS dates determined on total organic matter (OM) indicate that the sedimentation rate in this lake is about 30 cm/ka for the late Pleistocene to early Holocene period. There are differences in the δ13C values of organic carbon between the two cores, which may be a result of differences in location from the present shoreline and of different water depths. In the deeper-water core the δ13C values show a general downcore decrease to the base of the core with a sharp change to lower values of about 4‰ at a depth of 100 cm (8.7 ka). The general trend of downcore decrease in 13C values can be attributed either to a systematic decrease in the relative proportion of C4 type of OM, owing to an increase in precipitation and change in vegetation cover from grassland to forest, or to utilization of isotopically enriched carbon during photosynthesis. The δ15N values show a general downcore increase with again a sharp change of about 5‰ to lower values at about 8.7 ka. A sharp change of about 5‰ and 4‰ to more depleted values at a depth of 100 cm of both 15N and 13C, respectively, suggests either hiatus or abrupt change in climatic condition from wetter conditions to drier conditions. There is enhanced preservation of OM in the lake as depicted by high mean values of organic carbon and nitrogen at both sites.  相似文献   

15.
Core sediment samples collected from the Hess Rise, North Pacific, were analyzed for 20 common amino acids (AA) and two hexosamines (HA) to understand the relation between glacial–interglacial variations and deposition/preservation of sedimentary organic matter (OM). The sediments are predominantly carbonaceous (carbonates 35–80%). AA-based parameters—aspartic acid/glycine ratio and serine+threonine relative mole content—suggest that calcareous plankton was the major source of OM in these sediments. This inference is supported by the similarity in distribution patterns of AA and HA contents with that of organic carbon. Low values of AA/HA and glucosamine/galactosamine ratios (average 4.4 and 1.1, respectively) imply that much of the planktonic OM was replaced by microbial OM. The relative molar concentration of two nonprotein AA (β-alanine and γ-aminobutyric acid) varied with age of sediments; i.e., they were less abundant in recent sediments and more abundant in the oldest sediments. This trend is an indicator of extremely slow but continuous enzymatic degradation of proteinaceous OM within the sediments. So far, bulk OM has been believed to be one of the best proxies for estimation of primary productivity. However, it may be an underestimate, even for the late Quaternary sediments. Comparison of AA and HA content variations with SPECMAP stack revealed their enhanced deposition and preservation during glacial periods relative to interglacial periods. This, in turn, affected not only the planktonic production in surface waters but also the benthic community, including bacteria on the seafloor.  相似文献   

16.
Sharp variations in organic matter (OM) maturity with depth in sedimentary basins reflected in an abrupt increase in vitrinite reflectance (%Ro) can be caused by both the thermal effect of intrusions accelerating OM maturation in adjacent rocks and removal of a thick sedimentary layer during the extensive erosion of the basin. It is traditionally believed that the erosion of a 1.5–3.0-km-thick sedimentary layer must significantly affect the depth profile of OM maturity, resulting in a drastic increase in %Ro in the present-day sedimentary basin. Some authors used such jumps (ΔRo) to estimate the amplitude of erosion. However, our analysis showed that the depth profile of %Ro is controlled not only by the amplitude of erosion but also by sedimentation history during the posterosion stage of basin evolution. Eastern Algerian basins are good examples to examine this problem, because their evolution involved both the stage of extensive Hercynian erosion and subsequent strong hydrothermal and intrusive activity. Numerous measurements of %Ro in core samples from eastern Algerian sedimentary basins were used to analyze this problem. The calculations of %Ro(z) distributions on the basis of numerical reconstructions of the thermal history of sedimentary sections in more than 60 boreholes of the area showed that the Hercynian erosion could account for only a minor part of the observed amplitude of Δ%Ro, in spite of the significant amplitude of erosion (1.5–3.5 km) typical of the basins of the Algerian Sahara. At the same time, the intrusive and associated hydrothermal activity of the Triassic and Jurassic adequately explains the amplitude of a stepwise increase in OM maturation with depth in the present-day sedimentary sections of these basins. Thus, the reliability of erosion amplitudes estimated from jumps in depth profiles of %Ro can be assessed only after the detailed examination of the posterosion history of the basin. Original Russian Text ? Yu.I. Galushkin, M. Makhous, 2006, published in Geokhimiya, 2006, No. 12 pp. 1325–1337.  相似文献   

17.
Aggregation of particulate organic matter (POM) and mineral grains may result in physical protection of organic matter (OM). To test this, phytoplankton cells of the dinoflagellate Scrippsiella trochoidea were inoculated with a natural bacterial assemblage and incubated with or without the clay montmorillonite. Within 5 h, aggregation of phytoplankton OM and clay resulted in transfer of the majority (∼80%) of OM into the >1.6 g cm−3 density fraction. Degradation of particulate organic carbon (POC), particulate nitrogen (PN), dissolved organic carbon (DOC), and dissolved and particulate total hydrolyzable amino acids (THAA), were modeled with a multi-G approach. Quantity of resistant OM was between two and four times larger during clay incubation relative to clay-free incubation. The two incubations did not exhibit significant differences in degradation state of particulate amino acids nor were there indications of preferential sorption of basic amino acids. The results suggest that a considerable fraction of phytoplankton OM can become resistant, at least on a timescale of weeks, mostly due to aggregation of POM and clay mineral grains.  相似文献   

18.
The process of the transformation of fresh organic matter (OM) into more stable and recalcitrant humic substances is still not completely clear. Understanding how OM humification evolves in northern bog environments is extremely important, especially considering that they represent one of the largest terrestrial carbon pools.Structural changes of OM occurring during the humification process have been generally evaluated by indirect measurements of the degree of humification. Several approaches have been used, often providing contrasting results probably because humification is a complex process that evolves differently according to varying pedoclimatic conditions.In the present work, the authors followed the evolution of peat OM along a 165 cm bog profile (covering the mid- to late Holocene) correlating results obtained from both organic petrological and chemical investigation. Data clearly underline a significant agreement between the two perspectives, both showing either a quite immature peat material or the presence of three distinct zones along the profile. In detail, both spectroscopic (i.e., FT-IR and three dimensional fluorescence spectra, humification indexes), and Rock-Eval pyrolysis results (low residual organic carbon content and high hydrogen and oxygen index values) showed the occurrence of a central zone (from 20-30 cm to 120 cm depth) often characterized by high heterogeneity and a low degree of humification when compared to the upper ∼20 and bottom 40 cm sections.  相似文献   

19.
The molecular character of organic matter (OM) present in Triassic clays of the Upper Silesia Basin and NW border of the Holy Cross Mountains was determined using GC–MS analysis. Oxidation processes were the major cause of the main changes of extractable OM molecular composition during sedimentation and early diagenesis of the Triassic clays. They resulted in a very significant decrease in the OM content of the clays and transformation of n-alkanes, triterpanes and steranes. Despite the changes in biomarker composition resulting from the disappearance of unsaturated and ββ hopanes and dominance of αβ and βα hopanes as well as preponderance of αββ over ααα steranes, the aromatic ketones were identified. Such PACs as benzophenone, fluorenone, cyclopenta(def)phenanthrenone, antracenone and benzanthrone were among the compounds identified in the red clays. These commonly originate during oxidation of sedimentary organic matter. Moreover, the aromatic fraction is characterized by the presence of phenyl derivatives (phenylnaphthalenes, terphenyls, phenyldibenzofurans and phenylphenanthrenes) that are also products of the abiotic oxidation of organic matter. Periods of terrestrial sedimentation have been interrupted by long phases of OM weathering and oxidation during arid conditions, and OM might only have survived without significant oxidation changes when the sedimentation was fast and/or long-lasting.  相似文献   

20.
During Cruise 62nd of the R/V “Professor Gagarinsky” in September, 2014, the carbonate system of sediments and contents of nutrients and organic carbon in pore water were studied in two geochemical stations located in hypoxia areas in the Peter the Great Bay. It was established that the concentrations of silica, phosphorus, and ammonium increase by 5, 10, and 20 times, respectively, with sediment depth to 70–80 cm. The alkalinity, dissolved inorganic carbon, and the partial pressure of carbon dioxide significantly increase with depth, while рН value and organic matter (ОM) decrease. Changes in the chemical composition of pore water with sediment depth (0–80 cm) are caused by anaerobic microbial degradation of OM, concentration of which in the top sediment layer is 2–3%. The degradation products of OM in the bottom waters of bay and pore waters of bottom sediments indicate that its main sources are diatoms. During hypoxia, the oxygen demand rate by sediment surface near Furugelm Island is estimated to be 5 mmol/(m2 day). A combination of such factors as downwelling circulation, the absence of photosynthetically active radiation, and the high oxygen demand rate at the water/sediment interface provides hypoxia formation in the depressions of the Peter the Great Bay bottom topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号