首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
作为一种新型开发的绿色能源,地热资源被越来越多的人所重视.开采埋藏较深的地热资源风险大,因此开发前的地质和地球物理勘查是十分必要的.采用单一的地球物理方法勘探具有很大的风险,因此采用多种方法进行综合调查可以降低单一方法的风险,取得较好的效果.本文以狮子湖温泉为例,研究了地球物理方法在温泉勘探的应用.本次勘探采用可控源音频大地电磁法(CSAMT-Controlled Source Audio-frequency Magnetotellurics)和微重力测量,CSAMT是针对大地电磁测深法场源的随机性和信号微弱,提出的一种采用可以控制的人工场源改进方案.仪器采用美国Zonge公司生产的GDP-32Ⅱ.该方法由人工向地下供入音频谐变电流建立电磁场,通过仪器在地面接收从地下反馈来的信息,根据不同时代、岩性地层电性特征达到勘查目的.为此我们在测区做了两条剖面,从CSAMT反演图推断,自上而下可分为3个电阻率层,该剖面视电阻率具有很好的层理特征,反映了厚大的中新生代地层(Edn、K)覆盖.剖面西部有明显的泥盆系地层(D)存在.根据视电阻率的变化特点,可以推断这条剖面的5条断层.在剖面中部距地表400~800米深处存在一明显低阻区,推测应为含水破碎带或低阻泥岩.对数据进行二维反演,可以清楚的看到利于储水的盆地构造.CSAMT方法受静态效应影响很大.静态效应位移可能是由地形和电阻率的浅部的横向变化引起的,既是不可避免的,也是不可预测的.因此对数据进行预处理是十分必要的.减少静态效应的影响办法有以下三种:(1)、对效应进行理论计算;(2)、采用空间滤波和相位积分等处理方法;(3)、使用独立的、无静态效应的测量方法.计算静态效应理论值在理论上是简捷的,但在实际的野外条件下,由于无法预测引起静态效应的物体的几何尺寸和电性参数,因此这种方法无法得到可靠的校正值.空间滤波处理是目前广泛采用的一类方法,Bostick(1986)提出了消除MT数据中静态效应的电磁列阵剖面法(EMAP).EMAP法由于采用连续的剖面测量,可采用窗口可变的自适应空间滤波器-汉宁窗(Hanning window)或叫余弦钟形滤波器消除静态效应.但是这种方法提供了静态效应的要求的数据密度,这就增大了大量的额外测量,提高了获得数据的代价.因此,我们做重力勘探与CSAMT相对比.微重力测量使用美国产LCR-D型重力仪.实测的微重力异常是地下由浅到深各类地质体的物性差异在地面综合叠加的效应,其中包括界面起伏、岩性不均匀、地壳与壳下物质的厚度变化等诸多地质因素在内.实测的重力异常值经过固体潮改正、零点漂移改正、布格改正、正常场改正之后,得到改正后的重力异常值.从微重力反演结果看来,自西往东重力异常逐渐减小,程台阶下降趋势,并趋于平缓,验证了CSAMT的异常结果.从而弥补了CSAMT法的不足.通过这两种方法,我们大致查明了新生代红层盆地的产出形态.该红层盆地西侧边缘位于青山小学一带,自西往东变深;并反演计算出新生代红层与晚古生代泥盆系地层的分界面.深部地球物理勘探的方法有很多,各有各自的优缺点,我们不能从单一的一种方法得到的结论来判断地下地质构造.CSAMT法勘探深度大,但由于本身的物理特性,导致静态效应、近场效应等影响甚大.严重影响我们对地下地质目标体深度的判断,重力和CSAMT法的相互验证,很好的说明了多种地球物理方法综合测定的优势.  相似文献   

2.
A ground gravity survey over the Bondy gneiss complex and its mineralized iron oxide- and copper-rich hydrothermal system(s) in the Grenville Province of SW Quebec was undertaken to aid mineral exploration in mapping subsurface intrusions. Several kilometric-scale positive Bouguer anomalies were identified that coincide with outcropping mafic and intermediate intrusive rocks of the post peak-metamorphic, 1.17-1.16 Ga mafic to intermediate Chevreuil suite intrusions and a 1.09-1.07 Ga Rolleau ultramafic stock. An additional 4 × 3 kilometre positive gravity anomaly indicates a mafic body underlies part of the metamorphosed hydrothermal system in the area of magnetite, pyrite, pyrrhotite, and chalcopyrite mineralization. Advanced argilic alteration associated with sulphide enrichment here is however indicative of an epithermal system with a felsic intrusion fluid source. As a felsic intrusion cannot explain the positive Bouguer gravity anomaly both felsic and mafic bodies must be present beneath the mineralized zone. Our preferred interpretation based on integrating gravity data and 2D forward gravity modelling with the results of field and geochemical studies is that this anomaly corresponds to a ca. 500 m deep mafic 1.17-1.16 Ga Chevreuil suite pluton that may have provided the source for hydrothermal fluids associated with late ductile shear- and fault-related mineralization or remobilization of early mineralization associated with a felsic pluton into late structures. This interpretation is compatible with gabbro xenoliths in the 1.07 Ga Rivard lamprophyre dyke on the NW margin of the gravity anomaly that bear significant similarities with those of the Chevreuil intrusive suite. The presence of both early felsic and late mafic intrusions beneath a group of three mineral occurrences in the Bondy gneiss complex strengthens their prospectivity in comparison to other mineral occurrences in the area. That early, pre-metamorphic mineralization was upgraded late in the tectonothermal evolution during a subsequent igneous and deformation event agrees with interpretations of other IOCG-style deposits in the Lac Manitou area of the eastern Grenville Province.  相似文献   

3.
从地球物理场信息分析西宁盆地地热地质条件   总被引:1,自引:0,他引:1       下载免费PDF全文
王斌  何世豪  李百祥 《地震工程学报》2011,33(2):149-154,165
在对西宁盆地进行可控源音频大地电磁测深(CSAMT)全面探测的基础上,结合以往重力、地震、大地电磁测深、直流电测深等物探资料综合解释,揭示了西宁盆地隆坳构造格局和盆地性状,据地温场分布特征探讨了热储类型,指出西宁盆地中西宁坳陷属张性、张扭性,具有地温场高、地温梯度大的特点,且热储类型具盆地传导兼断裂对流型特征;大通、平安坳陷属压性、压扭性坳陷,地温场、地温梯度相对较低,热储类型为盆地传导型.西宁断陷是地热开发有利地段.  相似文献   

4.
Isostatic gravity highs bordering the passive continental margins are interpreted as resulting from oceanic basement highs. These basement elevations are relics of the transient phenomenon of a higher ridge axis elevation during early rifting. The steep landward gradient in the isostatic gravity field, generally associated with a magnetic edge effect anomaly, delineates the boundary between oceanic and continental basement.  相似文献   

5.
The Aluto-Langano geothermal field is located in the central southern portion of Ethiopia within the Ethiopian Rift Valley. The gravity of the area was surveyed in an attempt to delineate the subsurface structure and to better understand the relationship between the geothermal systems and the subsurface structure. The gravity data were analyzed using integrated gradient interpretation techniques, such as the Horizontal Gradient (HG), Source Edge Detection (SED), and Euler Deconvolution (ED) methods. These techniques detected many faults that were compared with the mapped faults in the surface geology. The results of the present study will lead to an improved understanding of the geothermal system in the study area and aid the future geothermal exploration of the area.  相似文献   

6.
The southeastern Karoo Basin is considered to be one of the most prospective areas for shale gas exploration in South Africa. An interesting magnetic anomaly, the Beattie magnetic anomaly (BMA), and geologic intrusions are seen on the magnetic map. To date, the source of the BMA and interconnectivity of the igneous intrusions are not well understood. In this study, we investigate the interconnectivity of the igneous intrusions and possible location of the source of the BMA using gravity and magnetic methods. The gravity model results showed that igneous intrusions are interconnected at depth, which probably pose threat by increasing the risk of fracking the Karoo for shale gas exploration. The magnetic results revealed that the BMA becomes stronger with depth. The average depths to the top of the shallow and deep magnetic sources were estimated to be approximately 0.6 and 15 km, respectively.  相似文献   

7.
A Bouguer gravity anomaly map is presented of the North Sea and adjacent land areas in Norway and Denmark, covering an area situated between 56° and 62°N, 1°W and 10°E. The gravity data from the UK sector of the North Sea, the land and offshore areas of Denmark, and the land areas of Norway have been published before. However, the gravity data from the Norwegian sector of the North Sea are new. A large number (about 60) of individual gravity features can be defined in the mapped area. Most of those situated in the UK sector of the North Sea and on land in Norway have been discussed earlier; however, most of the anomalies found elsewhere which are qualitatively interpreted here have not been discussed before. An interpreted Bouguer anomaly map is presented which identifies all these features. The majority of the gravity anomalies encountered in the mapped area can be shown to be associated with one of the following geological features: (i) basement highs, (ii) large bodies of heavy basic or ultrabasic rock in the crystalline basement, (iii) large igneous intrusions within the sedimentary column and thick accumulations of volcanic rocks or their associated eruption centers, (iv) major basement faults. Large-scale geological structures such as the Central, Viking and Sogn Grabens and the East Shetland, Stord, Forth Approaches and Norwegian-Danish Basins are essentially in isostatic equilibrium and are only locally marked by relatively weak gravity minima. A residual gravity anomaly map has been produced by subtracting from the observed Bouguer anomalies the estimated gravity effect of an assumed thinned crust. This residual gravity anomaly map shows a number of features of the Bouguer anomaly field with greater clarity.  相似文献   

8.
In recent years (1970–72 and 1982–84) two inflation episodes took place in the Campi Flegrei caldera (Italy), characterized by significant ground uplift and gravity variations. An elastic half-space model with vertical density stratification is employed to compute the displacement field and the gravity variations produced by the deformation of buried layers, following the inflation of a spherically symmetric deformation source. Contributions to gravity variations are produced by dilation/contraction of the medium, by the displacements of density interfaces (the free surface and subsurface layers) and of source boundaries and, possibly, by new mass input from remote distances into the source volume. Three cases were examined in detail: In case I, the magma chamber is identified as the deformation source and volume and pressure increase in the magma chamber is due to input of new magma from remote distances; in case II deformation is due to magma differentiation within the magma chamber (deformation source with constant mass); in case III the geothermal system is identified as the deformation source and a pressure increase, possibly driven by the exsolution of high temperature and high pressure volatiles in the magma chamber, is assumed to play a dominant role. From the comparison between measured and computed gravity residuals (free-air-corrected gravity variations) we can assess that, in case I, an inflation source with constant density would predict gravity residuals compatible with observations, whereas an expansion at constant mass (case II) would predict gravity residuals much lower than observed. The resolving power of gravity data however prevents accurate assessment of the density of the emplaced material. In case III, the pervasive density increase of the geothermal fluids induced by pressure increase is assumed to be the main source of gravity variations. The average porosity value required for this model to match both the ground deformation and the gravity residuals is found to be ˜10%, a value which is compatible with measured porosity values at Campi Flegrei in deep wells. The subsidence phases following both inflation episodes and the gravity residuals during subsidence lead us to consider case III as more plausible, even if a suitable combination of cases I and III cannot be discarded.  相似文献   

9.
山西断陷带地热分布的某些特征   总被引:1,自引:0,他引:1  
利用山西断陷带的大地热流、地温梯度和温泉分布的资料,研究了地热分布与重力场、地壳深部构造和地震分布的关系。认为,区域性重力负异常多反映的是沉积盆地或凹陷;而在温泉附近,由于地壳深部高密度的熔融物质沿断裂上涌而形成重力正异常;在同一深度上,地壳和岩石圈薄的断陷盆地内部,其热流和温度都为高值;指出山西断陷带内的构造活动性、壳幔突变带、重磁力等值线密集带、大地热流和地温梯度高值区以及温泉密集分布带与地震活动之间都有着内在的联系。  相似文献   

10.
This paper is concerned with a discussion of a fundamental problem in geothermal research, that of reaching an understanding of the structure and physical nature of zones of thermal discharges, taking the Pauzhetka hydrothermal system as an example along with the eponymous geothermal field situated at the southern tip of Kamchatka. We combined geological and geophysical results from magnetic surveying, electrical surveying, gravity surveying, soil thermometry, pitting and well drilling in hydrothermal clay, to carry out a detailed study of a large zone of hydrothermal discharges in the structure of this hydrothermal system, that is, the East Pauzhetka thermal field. We identified a system of blocks that control aquifers, mineralization zones at the base of the sequence of hydrothermal clay, steam-charged and water-saturated volumes, and volumes where ascending hydrothermal brines circulate via fissures and pores. We hypothesize the existence of a shallow (a few tens of meters) top of a subintrusive body of an intermediate or basic composition. The intrusion of that body may have given rise to the formation of a tectono-magmatic uplift in the East Pauzhetka thermal field. The resulting geological and geophysical data stimulate multidisciplinary surveys of other areas in the Pauzhetka geothermal field and make their contribution to the solution of a major scientific and applied problem, which is to determine the source of heat for the field.  相似文献   

11.
《Journal of Geodynamics》2007,43(1):153-169
A Bouguer anomaly map is presented of southern central Iceland, including the western part of Vatnajökull and adjacent areas. A complete Bouguer reduction for both ice surface and bedrock topography is carried out for the glaciated regions. Parts of the volcanic systems of Vonarskarð-Hágöngur, Bárðarbunga-Veiðivötn, Grímsvötn-Laki, and to a lesser extent Kverkfjöll, show up as distinct features on the gravity map. The large central volcanoes with calderas: Vonarskarð, Bárðarbunga, Kverkfjöll and Grímsvötn, are associated with 15–20 mGal gravity highs caused by high density bodies in the uppermost 5 km of the crust. Each of these bodies is thought to be composed of several hundred km3 of gabbros that have probably accumulated over the lifetime of the volcano. The Skaftárkatlar subglacial geothermal areas are not associated with major anomalous bodies in the upper crust. The central volcanoes of Vonarskarð and Hágöngur belong to the same volcanic system; this also applies to Bárðarbunga and Hamarinn, and Grímsvötn and Þórðarhyrna. None of the smaller of the two volcanoes sharing a system (Hágöngur, Hamarinn and Þórðarhyrna) is associated with distinct gravity anomalies and clear caldera structures have not been identified. However, ridges in the gravity field extend between each pair of central volcanoes, indicating that they are connected by dense dyke swarms. This suggests that when two central volcanoes share the same system, one becomes the main pathway for magma, forming a long-lived crustal magma chamber, a caldera and large volume basic intrusive bodies in the upper crust. Short residence times of magma in the crust beneath these centres favour essentially basaltic volcanism. In the case of the second, auxillary central volcano, magma supply is limited and occurs only sporadically. This setting may lead to longer residence times of magma in the smaller central volcanoes, favouring evolution of the magma and occasional eruption of rhyolites. The eastern margin of the Eastern Volcanic Zone is marked by a NE–SW lineation in the gravity field, probably caused by accumulation of low density, subglacially erupted volcanics within the volcanic zone. This lineation lies 5–10 km to the east of Grímsvötn.  相似文献   

12.
中低温对流型地热资源在华北地区广泛分布,是一种清洁的替代能源.与活动断裂带相关的水热型地热资源是中低温地热系统的重要组成部分.本文基于高精度重力测量、微动测深及钻孔温度测量等数据,从热源、通道、储层和盖层四个方面探讨了南口—孙河断裂带水热系统特征.低重力异常揭示的燕山期花岗二长岩、闪长岩岩体范围为23.8 km~2和14.3 km~2,放射性测井数据计算得到其生热率均值为3.14μW·m~(-3),侏罗系火山岩生热率均值为1.65μW·m~(-3),隐伏岩体和火山岩均难以构成地热系统的附加热源.重力异常显示南口—孙河断裂带宽度约500~800 m,断裂带切割蓟县系雾迷山组白云岩热储层.钻井温度曲线显示断裂带内水热活动强烈,说明该断裂带是导水、导热的重要通道.断裂带南西侧马池口一带第四系松散层与侏罗系火山岩形成了热储盖层,微动测深显示火山岩最大厚度约1500 m.综上源、通、储、盖四个要素分析,该地热系统为热传导一对流复合型,来自京西北山区的大气降水经远距离径流深循环吸收地层热量后沿南口—孙河断裂上移到达裂隙发育的白云岩地层中形成热水.总之,沿南口—孙河断裂带具备了良好的地热地质条件,可达到规模开采的条件.  相似文献   

13.
The earth's largest positive geoid height anomalies are associated with subduction zones and hotspots. Although the correlation with subduction has been noted for many years, the correlation with hotspots is fully evident only when the subduction-related geoid highs are removed from the observed field. Using the assumption that subducted lithospheric slabs are uncompensated and are thermally re-equilibrated with the asthenosphere at the maximum depth of earthquakes, the expected geoid anomaly over subduction zones is calculated. This field provides a satis-factory fit to the observed circum-Pacific high. Subtraction of this predicted anomaly leaves a residual field which is correlated, at greater than the 99% confidence level, with the distribution of hotspots. Broad residual geoid highs occur over the central Pacific and the Africa/eastern Atlantic regions, the same areas where the hotspots are concentrated. The mass anomalies associated with hotspots and subducted slabs apparently control the location of the earth's spin axis.  相似文献   

14.
西藏羊八井高温地热田地噪声与微地震勘查研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为进一步探测西藏羊八井地热田深部高温热储的信息,1989年9-10月在羊八井热田进行了地噪声测量、地热噪声源测试及微地震台网的短期监测工作结果得出:热田南部浅层热储的地噪声具有波谱主频稳定与振幅大的特性,圈定的异常范围与已知热储的分布一致;热田北部地噪声的波谱具有主频高、振幅小的特征.在热田首次记录到微地震与极微地震活动,综合结果分析认为在热田北部具有勘探深部高温热储的前景,并以实际资料给出了3处优先勘探的地段.  相似文献   

15.
A regional gravity study of Honduras was performed as part of a major study of the geothermal resource potential of Honduras. This study was conducted by Los Alamos National Laboratory, in cooperation with the Honduras government. Regional offshore free-air and onshore Bouguer gravity maps, and residual/isostatic gravity maps of Honduras and surrounding regions were produced. From these data several regional crustal and upper mantle models were produced. These models pass through two local geothermal sites, Platanares and San Ignacio. The regional geologic and tectonic implications of the models and their relevance to the geothermal potential of Honduras and to six well known geothermal sites in particular are examined. No obvious regional structures observed in the gravity data can explain the thermal enhancement in general or the specific geothermal sites. More local tectonic or structural conditions must control the distribution of the thermally enhanced areas.  相似文献   

16.
最新地震资料显示,琼东南盆地深水区长昌凹陷内部分布着多个火成岩侵入体,单个侵入体的面积可超过300 km2,高(厚)度约为10 km.本文基于有限元方法的二维剖面地温场模拟,分析了研究区位于同一条地震测线上的三个不同规模侵入体对温度场的影响,并结合热史恢复方法及Easy%Ro模型,定量评价了侵入体对距其2 km及5 km处人工井崖城组烃源岩有机质成熟度Ro的影响.结果表明,凹陷内火成岩侵入体对温度场有显著影响的时限不超过1 Ma,5 Ma以后影响非常微弱,10 Ma以后侵入体温度与围岩温度基本一致;侵入体对烃源岩有机质成熟度的影响随侵入体的规模、距侵入体的距离不同而不同,规模最大侵入体对距其2 km处崖城组烃源岩成熟度Ro的影响可达1.6%,而对距其5 km处的烃源岩成熟度影响较小.  相似文献   

17.
We report a comprehensive morphological, gravity and magnetic survey of the oblique- and slow-spreading Reykjanes Ridge near the Iceland mantle plume. The survey extends from 57.9°N to 62.1°N and from the spreading axis to between 30 km (3 Ma) and 100 km (10 Ma) off-axis; it includes 100 km of one arm of a diachronous ‘V-shaped' or ‘chevron' ridge. Observed isochrons are extremely linear and 28° oblique to the spreading normal with no significant offsets. Along-axis there are ubiquitous, en-echelon axial volcanic ridges (AVRs), sub-normal to the spreading direction, with average spacing of 14 km and overlap of about one third of their lengths. Relict AVRs occur off-axis, but are most obvious where there has been least axial faulting, suggesting that elsewhere they are rapidly eroded tectonically. AVRs maintain similar plan views but have reduced heights nearer Iceland. They are flanked by normal faults sub-parallel to the ridge axis, the innermost of which occur slightly closer to the axis towards Iceland, suggesting a gradual reduction of the effective lithospheric thickness there. Generally, the amplitude of faulting decreases towards Iceland. We interpret this pattern of AVRs and faults as the response of the lithosphere to oblique spreading, as suggested by theory and physical modelling. An axial, 10–15 km wide zone of high acoustic backscatter marks the most recent volcanic activity. The zone's width is independent of the presence of a median valley, so axial volcanism is not primarily delimited by median valley walls, but is probably controlled by the lateral distance that the oblique AVRs can propagate into off-axis lithosphere. The mantle Bouguer anomaly (MBA) exhibits little mid- to short-wavelength variation above a few milliGals, and along-axis variations are small compared with other parts of the Mid-Atlantic Ridge. Nevertheless, there are small axial deeps and MBA highs spaced some 130 km along-axis that may represent subdued third-order segment boundaries. They lack coherent off-axis traces and cannot be linked to Oligocene fracture zones on the ridge flanks. The surveyed chevron ridge is morphologically discontinuous, comprising several parallel bands of closely spaced, elevated blocks. These reflect the surrounding tectonic fabric but have higher fault scarps. There is no evidence for off-axis volcanism or greater abundance of seamounts on the chevron. Free-air gravity over it is greater than expected from the observed bathymetry, suggesting compensation via regional rather than pointwise isostasy. Most of the observed variation along the ridge can be ascribed to varying distance from the mantle plume, reflecting changes in mantle temperature and consequently in crustal thickness and lithospheric strength. However, a second-order variation is superimposed. In particular, between 59°30′N and 61°30′N there is a minimum of large-scale faulting and crustal magnetisation, maximum density of seamounts, and maximum axial free-air gravity high. To the north the scale of faulting increases slightly, seamounts are less common, and there is a relative axial free-air low. We interpret the 59°30′N to 61°30′N region as where the latest chevron ridge intersects the Reykjanes Ridge axis, and suggest that the morphological changes that culminate there reflect a local temperature high associated with a transient pulse of high plume output at its apex.  相似文献   

18.
Los Azufres geothermal field is located within a silicic volcanic complex in central Mexico. The complex is one of the major silicic centers in the Trans-Mexican Volcanic Belt (TMVB). Pradal and Robin (1985) first suggested the existence of the Los Azufres caldera, and Ferrari et al. (1991) recognized the existence of a collapse structure. According to Pradal and Robin this is a caldera of resurgent type. This geophysical study aims to contribute to the knowledge of the structure of the Los Azufres area. Gravity, aeromagnetic, magnetotelluric (MT) and d.c. vertical electric-resistivity soundings were analyzed. Results show that Los Azufres is a very structurally complex setting with relatively thin crust caused by the extensional tectonics characterizing this central sector of the TMVB. Faults belonging to the E-W to NE-SW (extensional neotectonics) and NW-SE (Basin and Range province) systems are observed to affect the geologic units of Los Azufres. According to our study, the Los Azufres geothermal field is located in a structural high located in the middle of a sub-circular depression delimited to the north-northeast by the Santa Ines Range, and to the southwest by the Mil Cumbres formation. The larger depression consists of two narrow, deep depressions that correspond to La Venta and to the Valley of Juarez. They are separated by the above mentioned structural high. These sub-depressions are believed to be the sites of a maximum caldera collapse, and the structural high is interpreted to be at least in part the caldera's resurgent dome. Geoelectric structure of the caldera derived from d.c. resistivity indicates that the brines of the Los Azufres geothermal system ascend along faults, both bounding and internally disrupting the structural high/resurgent dome. A reasonable correlation is observed between gravity and aeromagnetic data.  相似文献   

19.
Igneous intrusions, notably carbonatitic–alkalic intrusions, peralkaline intrusions, and pegmatites, represent significant sources of rare‐earth metals. Geophysical exploration for and of such intrusions has met with considerable success. Examples of the application of the gravity, magnetic, and radiometric methods in the search for rare metals are presented and described. Ground gravity surveys defining small positive gravity anomalies helped outline the shape and depth of the Nechalacho (formerly Lake) deposit within the Blatchford Lake alkaline complex, Northwest Territories, and of spodumene‐rich mineralization associated with the Tanco deposit, Manitoba, within the hosting Tanco pegmatite. Based on density considerations, the bastnaesite‐bearing main ore body within the Mountain Pass carbonatite, California, should produce a gravity high similar in amplitude to those associated with the Nechalacho and Tanco deposits. Gravity also has utility in modelling hosting carbonatite intrusions, such as the Mount Weld intrusion, Western Australia, and Elk Creek intrusion, Nebraska. The magnetic method is probably the most successful geophysical technique for locating carbonatitic–alkalic host intrusions, which are typically characterized by intense positive, circular to sub‐circular, crescentic, or annular anomalies. Intrusions found by this technique include the Mount Weld carbonatite and the Misery Lake alkali complex, Quebec. Two potential carbonatitic–alkalic intrusions are proposed in the Grenville Province of Eastern Quebec, where application of an automatic technique to locate circular magnetic anomalies identified several examples. Two in particular displayed strong similarities in magnetic pattern to anomalies accompanying known carbonatitic or alkalic intrusions hosting rare‐metal mineralization and are proposed to have a similar origin. Discovery of carbonatitic–alkalic hosts of rare metals has also been achieved by the radiometric method. The Thor Lake group of rare‐earth metal deposits, which includes the Nechalacho deposit, were found by follow‐up investigations of strong equivalent thorium and uranium peaks defined by an airborne survey. Prominent linear radiometric anomalies associated with glacial till in the Canadian Shield have provided vectors based on ice flow directions to source intrusions. The Allan Lake carbonatite in the Grenville Province of Ontario is one such intrusion found by this method. Although not discovered by its radiometric characteristics, the Strange Lake alkali intrusion on the Quebec–Labrador border is associated with prominent linear thorium and uranium anomalies extending at least 50 km down ice from the intrusion. Radiometric exploration of rare metals hosted by pegmatites is evaluated through examination of radiometric signatures of peraluminous pegmatitic granites in the area of the Tanco pegmatite.  相似文献   

20.
An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号