首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The librational motion round the Lagrangian triangular points L4, L5 with mass exchange of the primaries is investigated according to Brown's theory. The results are the same as in the case of isotropic mass variation studied earlier (Horedt, 1974a): (i) The extrema of the elongations with respect to the small mass are unaffected by mass exchange. (ii) The equations for the extrema of the Trojan's distance from the Sun and for the libration period are formally the same as in the constant mass problem, but with the understanding that the masses are now time dependent quantities. A Trojan cannot leave the libration domain due to a mass variation of the primaries obeying the constraints from Equation (2.4), with a mass ratio of the primaries m/M≤0.0401.  相似文献   

2.
The collinear equilibrium position of the circular restricted problem with the two primaries at unit distance and the massless body at the pointL 3 is extended to the planar three-body problem with respect to the massm 3 of the third body; the mass ratio μ of the two primaries is considered constant and the constant angular velocity of the straight line on which the three masses stay at rest is taken equal to 1. As regards periodic motions ‘around’ the equilibrium pointL 3, four possible extensions from the restricted to the general problem are presented each of them starting with a simple or a doubly periodic orbit of the family α of the Copenhagen category (μ=0.50). Form 3=0.10, μ=0.50 (i.e. for fixed masses of all three bodies) the characteristic curve of the extended family α is found. The qualitative differences of the families corresponding tom 3=0 andm 3=0.10 are discussed.  相似文献   

3.
This paper studies the asymmetric solutions of the restricted planar problem of three bodies, two of which are finite, moving in circular orbits around their center of masses, while the third is infinitesimal. We explore, numerically, the families of asymmetric simple-periodic orbits which bifurcate from the basic families of symmetric periodic solutions f, g, h, i, l and m, as well as the asymmetric ones associated with the families c, a and b which emanate from the collinear equilibrium points L 1, L 2 and L 3 correspondingly. The evolution of these asymmetric families covering the entire range of the mass parameter of the problem is presented. We found that some symmetric families have only one bifurcating asymmetric family, others have infinity number of asymmetric families associated with them and others have not branching asymmetric families at all, as the mass parameter varies. The network of the symmetric families and the branching asymmetric families from them when the primaries are equal, when the left primary body is three times bigger than the right one and for the Earth–Moon case, is presented. Minimum and maximum values of the mass parameter of the series of critical symmetric periodic orbits are given. In order to avoid the singularity due to binary collisions between the third body and one of the primaries, we regularize the equations of motion of the problem using the Levi-Civita transformations.  相似文献   

4.
The restricted 3-body problem is generalised to include the effects of an inverse square distance radiation pressure force on the infinitesimal mass due to the large masses, which are both arbitrarily luminous. A complete solution of the problems of existence and linear stability of the equilibrium points is given for all values of radiation pressures of both liminous bodies, and all values of mass ratios. It is shown that the inner Lagrange point, L1, can be stable, but only when both large masses are luminous. Four equilibrium points, L6, L7, L8, and L9 can exist out of the orbital plane when the radiation pressure of the smaller mass is very high. Although L8 and L9 are always linearly unstable, L6 and L7 are stable for a small range of radiation pressures provided that both large masses are luminous.  相似文献   

5.
AA Dor is an eclipsing, close, post common-envelope binary (PCEB) consisting of a sdOB primary star and an unseen secondary with an extraordinary small mass (M 2≈ 0.066 M )—formally a brown dwarf. The brown dwarf may have been a former planet which survived a common envelope (CE) phase and has even gained mass. A recent determination of the components’ masses from results of NLTE spectral analysis and subsequent comparison to evolutionary tracks shows a discrepancy compared to masses derived from radial-velocity and the eclipse curves. Phase-resolved high-resolution and high-SN spectroscopy was carried out in order to investigate this problem. We present results of a NLTE spectral analysis of the primary, an analysis of its orbital parameters, and discuss possible evolutionary scenarios.  相似文献   

6.
7.
Critical analysis of theories of the long-term variations of the ecliptical elements of the Earth leads to the following conclusions, regarding the influence of different terms on the accuracy of the expansions used:
  1. further improvement in planetary masses will not have significant influence:
  2. for the (e, π) system, terms depending upon the second order as to the disturbing masses are more important than ones coming from the third degree with respect to the planetary eccentricities and inclinations;
  3. for the (i, Ω) system, the latter terms have highly significant influence, whereas additional terms in masses are negligible. The same conclusion can be drawn for (ε,Ψ g ). Using these results, a new solution for the long-term variations of the Earth's orbital elements is obtained. The results fore, π,i, Ω include terms depending upon the second power as to the disturbing masses and to the third degree with respect to the planetarye's andi's. For the obliquity ε and the annual general precession in longitudeΨ g , a Laplace series is proposed where amplitudes, mean rates and phases are computed from those of the (i, Ω) system.
  相似文献   

8.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

9.
This article examines the effects of the zonal harmonics on the out-of-plane equilibrium points of Robe's circular restricted three-body problem when the hydrostatic equilibrium shape of the first primary is an oblate spheroid, the shape of the second primary is an oblate spheroid with oblateness coefficients up to the second zonal harmonic, and the full buoyancy of the fluid is considered. It is observed that the size of the oblateness and the zonal harmonics affect the positions of the out-of-plane equilibrium points L6 and L7. It is also observed that these points within the possible region of motion are unstable.  相似文献   

10.
The motion around the libration points is studied with Charlier's first order theory assuming the isotropic mass variation of the primaries does not exceed the order of the small primary and the derivatives of the masses with respect to time are negligible second order quantities. The results are analogous to those obtained with constant primary masses.  相似文献   

11.
Following the line of research outlined by Strittmatter and Wickramasinghe (1971) and recently by Shipman (1972), attention was drawn to the study of convective zones in white dwarfs for various masses and chemical compositions, in order to understand some observational features of their spectra. According to the results, convection strongly depends on the mass of the star, forM<0.5 M, and low hydrogen abundancesX?0.2) are sufficient to decrease the extension of the He-convection zones with respect to pure-He models. It is shown that the existence of DB white dwarfs seems not in agreement with the accretion rates predicted by Bondi (1952), and that DB's must evolve into H-lacking white dwarfs.  相似文献   

12.
We study numerically the photogravitational version of the problem of four bodies, where an infinitesimal particle is moving under the Newtonian gravitational attraction of three bodies which are finite, moving in circles around their center of mass fixed at the origin of the coordinate system, according to the solution of Lagrange where they are always at the vertices of an equilateral triangle. The fourth body does not affect the motion of the three bodies (primaries). We consider that the primary body m 1 is dominant and is a source of radiation while the other two small primaries m 2 and m 3 are equal. In this case (photogravitational) we examine the linear stability of the Lagrange triangle solution. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points on the orbital plane are given. The existence and the number of the collinear and the non-collinear equilibrium points of the problem depends on the mass parameters of the primaries and the radiation factor q 1. Critical masses m 3 and radiation q 1 associated with the existence and the number of the equilibrium points are given. The stability of the relative equilibrium solutions in all cases are also studied. In the last section we investigate the existence and location of the out of orbital plane equilibrium points of the problem. We found that such critical points exist. These points lie in the (x,z) plane in symmetrical positions with respect to (x,y) plane. The stability of these points are also examined.  相似文献   

13.
We have investigated an improved version of the classic restricted three-body problem where both primaries are considered oblate and are enclosed by a homogeneous circular planar cluster of material points centered at the mass center of the system. In this dynamical model we have examined the effect on the number and on the linear stability of the equilibrium locations of the small particle due to both, the primaries’ oblateness and the potential created by the circular cluster. We have drawn the zero-velocity surfaces and we have found that in addition to the usual five Lagrangian equilibrium points of the classic restricted three-body problem, there exist two new collinear points L n1,L n2 due to the potential from the circular cluster of material points. Numerical investigations reveal that with the increase in the mass of the circular cluster of material points, L n2 comes nearer to the more massive primary, while L n1 moves away from it. Owing to oblateness of the bodies, L n1 comes nearer to the more massive primary, while L n2 moves towards the less massive primary. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le \mu \le \frac{1}{2}$ , where μ c is the critical mass ratio influenced by oblateness of the primaries and the potential from the circular cluster of material points. The oblateness and the circular cluster of material points have destabilizing tendency.  相似文献   

14.
The orbits of fictitious bodies around Jupiter’s stable equilibrium points L 4 and L 5 were integrated for a fine grid of initial conditions up to 100 million years. We checked the validity of three different dynamical models, namely the spatial, restricted three body problem, a model with Sun, Jupiter and Saturn and also the dynamical model with the Outer Solar System (Jupiter to Neptune). We determined the chaoticity of an orbit with the aid of the Lyapunov Characteristic Exponents (=LCE) and used also a method where the maximum eccentricity of an orbit achieved during the dynamical evolution was examined. The goal of this investigation was to determine the size of the regions of motion around the equilibrium points of Jupiter and to find out the dependance on the inclination of the Trojan’s orbit. Whereas for small inclinations (up to i=20°) the stable regions are almost equally large, for moderate inclinations the size shrinks quite rapidly and disappears completely for i>60°. Additionally, we found a difference in the dynamics of orbits around L 4 which – according to the LCE – seem to be more stable than the ones around L 5.  相似文献   

15.
A periodic orbit of the restricted circular three-body problem, selected arbitrarily, is used to generate a family of periodic motions in the general three-body problem in a rotating frame of reference, by varying the massm 3 of the third body. This family is continued numerically up to a maximum value of the mass of the originally small body, which corresponds to a mass ratiom 1:m 2:m 3?5:5:3. From that point on the family continues for decreasing massesm 3 until this mass becomes again equal to zero. It turns out that this final orbit of the family is a periodic orbit of the elliptic restricted three body problem. These results indicate clearly that families of periodic motions of the three-body problem exist for fixed values of the three masses, since this continuation can be applied to all members of a family of periodic orbits of the restricted three-body problem. It is also indicated that the periodic orbits of the circular restricted problem can be linked with the periodic orbits of the elliptic three-body problem through periodic orbits of the general three-body problem.  相似文献   

16.
We investigated the stable area for fictive Trojan asteroids around Neptune’s Lagrangean equilibrium points with respect to their semimajor axis and inclination. To get a first impression of the stability region we derived a symplectic mapping for the circular and the elliptic planar restricted three body problem. The dynamical model for the numerical integrations was the outer Solar system with the Sun and the planets Jupiter, Saturn, Uranus and Neptune. To understand the dynamics of the region around L 4 and L 5 for the Neptune Trojans we also used eight different dynamical models (from the elliptic problem to the full outer Solar system model with all giant planets) and compared the results with respect to the largeness and shape of the stable region. Their dependence on the initial inclinations (0° < i < 70°) of the Trojans’ orbits could be established for all the eight models and showed the primary influence of Uranus. In addition we could show that an asymmetry of the regions around L 4 and L 5 is just an artifact of the different initial conditions.  相似文献   

17.
Gp. Horedt 《Icarus》1974,23(3):459-464
The equations of the plane circular restricted three-body problem are integrated in the case of an exponential mass variation of the small primary m for a particle librating around the tringular point and for a satellite of m. For a mass variation by a factor of 20, the librational amplitude of the particle shows no appreciable variation. The satellite escapes towards the regions inside the orbit of m, provided that the mass loss rate is sufficiently slow. Extrapolating these results to the real solar system, it seems unlikely that Jupiter's Trojans are former Jovian sattelites which escaped because of mass loss of proto-Jupiter. It also seems improbable that Pluto escaped from Neptune due to a proto-Neptunian mass loss.  相似文献   

18.
This article deals with the region of motion in the Sitnikov four-body problem where three bodies (called primaries) of equal masses fixed at the vertices of an equilateral triangle. Fourth mass which is finite confined to moves only along a line perpendicular to the instantaneous plane of the motions of the primaries. Contrary to the Sitnikov problem with one massless body the primaries are moving in non-Keplerian orbits about their centre of mass. It is investigated that for very small range of energy h the motion is possible only in small region of phase space. Condition of bounded motions has been derived. We have explored the structure of phase space with the help of properly chosen surfaces of section. Poincarè surfaces of section for the energy range ?0.480≤h≤?0.345 have been computed. We have chosen the plane (q 1,p 1) as surface of section, with q 1 is the distance of a primary from the centre of mass. We plot the respective points when the fourth body crosses the plane q 2=0. For low energy the central fixed point is stable but for higher value of energy splits in to an unstable and two stable fixed points. The central unstable fixed point once again splits for higher energy into a stable and three unstable fixed points. It is found that at h=?0.345 the whole phase space is filled with chaotic orbits.  相似文献   

19.
The existence of equilibrium points and the effect of radiation pressure have been discussed numerically. The problem is generalized by considering bigger primary as a source of radiation and small primary as an oblate spheroid. We have also discussed the Poynting-Robertson (P-R) effect which is caused due to radiation pressure. It is found that the collinear points L 1,L 2,L 3 deviate from the axis joining the two primaries, while the triangular points L 4,L 5 are not symmetrical due to radiation pressure. We have seen that L 1,L 2,L 3 are linearly unstable while L 4,L 5 are conditionally stable in the sense of Lyapunov when P-R effect is not considered. We have found that the effect of radiation pressure reduces the linear stability zones while P-R effect induces an instability in the sense of Lyapunov.  相似文献   

20.
Linear and nonlinear pulsation computations for the modelsM=0.8M ,L=10000 and 20000L were carried out in order to understand FG Sge's pulsation. The results may be summarized as follows:
  1. In the modelsL=10000L , the fundamental blue edge is nearT e =5700 K. The models show that instability of the third overtone extends to 7400 K and still has large positive growth rates. A nonlinear model of 7000 K shows a small amplitude ΔV=10 km s?1, ΔM bol=0.03 with a period of around 18 days, nearly equal to that of the third overtone.
  2. In the linear models ofL=20000L , the fundamental blue edge is shifted to 7000 K but the damping of this mode is so small that it is marginally stable to 7700 K. The third overtone has large positive growth rates of this region. The nonlinear model at 7700 K, however, shows no indication of third overtone pulsation.
We also examine the possibility, suggested by Whitney (1978), that the mass of FG Sge is 0.4M .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号