首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the hydroclimatic signal in a record of annual lamina (varve) thickness from High Arctic Lake A, Ellesmere Island (83°00.00′N, 75°30.00′W). In this unglacierized catchment, nival melt is the dominant source for meltwater and transport of sediment to the lake, and autumn snowfall is highly influential on varve thickness through the amount of snow available for melt in the following year. For the period during which climatic data are available, varve thickness in Lake A was significantly correlated (r = 0.50, p < 0.01) with the cumulative snowfall from August to October (ASO) during the previous year and, to a lesser extent, ASO mean daily temperature (r = 0.39, p < 0.01) at Alert, Nunavut (175 km east). The varve thickness record, interpreted as a proxy record of ASO snowfall and, by extension, ASO temperature, indicated above-mean conditions during five periods of the past millennium, including most of the 20th century. These results corresponded well to other available high-resolution proxy climate records from the region, with some discrepancies prior to AD 1500 and during the period AD 1700-1900.  相似文献   

2.
We present a multi‐proxy approach to reconstructing Holocene climate conditions in northeastern Spain based on an excellent correlation among the lamina thickness, colour parameters and isotope (δ18O and δ13C) variations recorded in a speleothem. An age model constructed from five U/Th dates and annual lamina counting suggests that the uppermost 14.7 cm of the MO‐7 stalagmite grew between 7.2 and 2.5 ka before present but experienced a growth hiatus from 4.9 to 4.3 ka. Three spectral analysis methods were applied to 11 time series. The results reveal common solar periodicities on decennial (Gleissberg cycle) and centennial (De Vries‐Suess cycle) scales. The onset of Holocene carbonate precipitation in the MO‐7 stalagmite appears to be associated with a cold, wet period, whereas the hiatus and the end of growth are related to warm, dry periods. This environmental trend fits well within the regional Holocene climate.  相似文献   

3.
Understanding the interactions of climate, physical erosion, chemical weathering and pedogenic processes is essential when considering the evolution of critical zone systems. Interactions among these components are particularly important to predicting how semiarid landscapes will respond to forecasted changes in precipitation and temperature under future climate change. The primary goal of this study was to understand how climate and landscape structure interact to control chemical denudation and mineral transformation across a range of semiarid ecosystems in southern Arizona. The research was conducted along the steep environmental gradient encompassed by the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO). The gradient is dominated by granitic parent materials and spans significant range in both mean annual temperature (>10 °C) and precipitation (>50 cm a?1), with concomitant shift in vegetation communities from desert scrub to mixed conifer forest. Regolith profiles were sampled from divergent and convergent landscape positions in five different ecosystems to quantify how climate-landscape position interactions control regolith development. Regolith development was quantified as depth to paralithic contact and degree of chemical weathering and mineral transformation using a combination of quantitative and semi-quantitative X-ray diffraction (XRD) analyses of bulk soils and specific particle size classes. Depth to paralithic contact was found to increase systematically with elevation for divergent positions at approximately 28 cm per 1000 m elevation, but varied inconsistently for convergent positions. The relative differences in depth between convergent and divergent landscape positions was greatest at the low and high elevation sites and is hypothesized to be a product of changes in physical erosion rates across the gradient. Quartz/Plagioclase (Q/P) ratios were used as a general proxy for bulk regolith chemical denudation. Q/P was generally higher in divergent landscape positions compared to the adjacent convergent hollows. Convergent landscape positions appear to be collecting solute-rich soil–waters from divergent positions thereby inhibiting chemical denudation. Clay mineral assemblage of the low elevation sites was dominated by smectite and partially dehydrated halloysite whereas vermiculite and kaolinite were predominant in the high elevation sites. The increased depth to paralithic contact, chemical denudation and mineral transformation are likely functions of greater water availability and increased primary productivity. Landscape position within a given ecosystem exerts strong control on chemical denudation as a result of the redistribution of water and solutes across the landscape surface. The combined data from this research demonstrates a strong interactive control of climate, landscape position and erosion on the development of soil and regolith.  相似文献   

4.
It is generally accepted that carbonates can be subducted to the mantle depths, where they are reduced with iron metal to produce a diamond. In this work, we found that this is not always the case. The mantle carbonates from inclusions in diamonds show a wide range of cation compositions (Mg, Fe, Ca, Na, and K). Here we studied the reaction kinetics of these carbonates with iron metal at 6–6.5 GPa and 1000–1500 °C. We found that the reduction of carbonate with Fe produces C-bearing species (Fe, Fe-C melt, Fe3C, Fe7C3, C) and wüstite containing Na2O, CaO, and MgO. The reaction rate constants (k = Δx2/2t) are log-linear relative to 1/T and their temperature dependences are determined to bekMgCO3 (m2/s) = 4.37 × 10?3 exp [?251 (kJ/mol)/RT]kCaMg(CO3)2 (m2/s) = 1.48 × 10?3 exp [?264 (kJ/mol)/RT]kCaCO3 (m2/s) = 3.06 × 10?5 exp [?245 (kJ/mol)/RT] andkNa2CO3 (m2/s) = 1.88 × 10?10 exp [?155 (kJ/mol)/RT].According to obtained results at least, 45–70 vol% of carbonates preserve during subduction down to the 660-km discontinuity if no melting occurs. The slab stagnation and warming, subsequent carbonate melting, and infiltration into the mantle saturated with iron metal are accompanied by a reduction of carbonate melt with Fe. The established sequence of reactivity of carbonates: FeCO3 ≥ MgCO3 > CaMg(CO3)2 > CaCO3 ? Na2CO3, where K2CO3 does not react at all with iron metal, implies that during reduction carbonate melt with Fe evolves toward alkali-rich. The above conclusions are consistent with the findings of carbonates in inclusions in diamonds from the lower mantle and high concentrations of alkalis, particularly K, in mantle carbonatite melts entrapped by diamonds from kimberlites and placers worldwide.  相似文献   

5.
The combined application of plant wax δD (δDwax) and branched glycerol dialkyl glycerol tetraethers (brGDGTs) has been suggested as proxy for paleo-elevation. In some of the altitudinal transects studied so far, nonlinear precipitation gradients, large variations in seasonality, soil and vegetation types introduced substantial amounts of scatter in the relationship between these proxies and altitude. To further evaluate the principal functioning of the proxies, δDwax and brGDGTs were analysed in surface soils along an altitude gradient (from 28 m up to 1865 m a.s.l.) in Meghalaya, India. The transect experiences limited seasonal temperature variation and receives very high monsoonal precipitation along the whole elevation gradient. The δDwax show a significant relation with altitude (r2 = 0.72). The additional fits with stream water δD (r2 = 0.72) and modelled precipitation δD (r2 = 0.72) indicate that δDwax tracks the altitude effect on precipitation. Also the brGDGT distribution shows a correlation with altitude, reflecting the decrease in temperature with higher elevation (r2 = 0.65, or r2 = 0.66 using the original and recalibrated methylation of branched tetraethers-cyclisation of branched tetraethers (MBT–CBT) proxy). Application of the original MBT–CBT calibration generates calculated air temperatures that overestimate measured air temperature by ∼6 °C, whereas temperatures similar to measured are obtained with the revised calibration. These results indicate that δDwax and brGDGTs may faithfully and accurately track environmental changes with altitude for transects where seasonal and diurnal temperature variability is relatively limited. Furthermore, proxy application to locations that experience high rainfall increases the suitability as climatic indicators, as it excludes soil moisture availability as a limiting factor.  相似文献   

6.
Lithium (Li) is a fluid-mobile element and δ7Li in secondary deposits represents an excellent proxy for silicate weathering and authigenic mineral formation. The soil samples from 1205 to 1295 cm in the Weinan profile, one of the best developed loess-paleosol sequences covering the last glacial–interglacial climatic cycle, were collected and chemically separated into detritus and carbonate fractions for subsequent analyses of Li, δ7Li, major and trace elements. Other desert specimens (i.e., Qaidam Desert, Tengger Desert, Badain Juran Desert and Taklimakan Desert) near the Chinese Loess Plateau (CLP) and various standard clays were analyzed for assisting provenance determination. The Li and δ7Li distributions in the detritus are rather homogeneous, 1.4–2.0 μg/g and +2.5‰ to +4.7‰, respectively, compared with the carbonate fraction. The detrital δ7Li varies systematically with magnetic susceptibility and grain size changes, reflecting significant Li isotopic variation associated with sources and mineralogy of detrital material. On the other hand, Li and δ7Li in carbonates show large changes, 781–963 ng/g and −4.1‰ to +10.2‰, respectively. These carbonate δ7Li correlated well with the estimated index of chemical weathering, as a result of Li mobilization and soil formation during chemical weathering.  相似文献   

7.
The Sierra Nevada of southern Spain is a landscape with a rich biological and cultural heritage. The range was extensively glaciated during the late Pleistocene. However, the postglacial paleoecologic history of the highest range in southern Europe is nearly completely unknown. Here we use sediments from a small lake above present treeline – Laguna de Río Seco at 3020 m elevation – in a paleoecological study documenting over 11,500 calendar years of vegetation, fire and climate change, addressing ecological and paleoclimatic issues unique to this area through comparison with regional paleoecological sequences. The early record is dominated by Pinus pollen, with Betula, deciduous Quercus, and grasses, with an understory of shrubs. It is unlikely that pine trees grew around the lake, and fire was relatively unimportant at this site during this period. Aquatic microfossils indicate that the wettest conditions and highest lake levels at Laguna de Río Seco occurred before 7800 cal yr BP. This is in contrast to lower elevation sites, where wettest conditions occurred after ca 7800. Greater differences in early Holocene seasonal insolation may have translated to greater snowpack and subsequently higher lake levels at higher elevations, but not necessarily at lower elevations, where higher evaporation rates prevailed. With declining seasonality after ca 8000 cal yr BP, but continuing summer precipitation, lake levels at the highest elevation site remained high, but lake levels at lower elevation sites increased as evaporation rates declined. Drier conditions commenced regionally after ca 5700 cal yr BP, shown at Laguna de Río Seco by declines in wetland pollen, and increases in high elevation steppe shrubs common today (Juniperus, Artemisia, and others). The disappearance or decline of mesophytes, such as Betula from ca 4000 cal yr BP is part of a regional depletion in Mediterranean Spain and elsewhere in Europe from the mid to late Holocene. On the other hand, Castanea sativa increased in Laguna de Río Seco record after ca 4000 cal yr BP, and especially in post-Roman times, probably due to arboriculture. Though not as important at high than at low elevations, fire occurrence was elevated, particularly after ca 3700 years ago, in response to regional human population expansion. The local and regional impact of humans increased substantially after ca 2700 years ago, with the loss of Pinus forest within the mountain range, increases in evidence of pasturing herbivores around the lake, and Olea cultivation at lower elevations. Though human impact was not as extensive at high elevation as at lower elevation sites in southern Iberia, this record confirms that even remote sites were not free of direct human influence during the Holocene.  相似文献   

8.
To evaluate the potential of using surficial shell accumulations for paleoenvironmental studies, an extensive time series of individually dated specimens of the marine infaunal bivalve mollusk Semele casali was assembled using amino acid racemization (AAR) ratios (n = 270) calibrated against radiocarbon ages (n = 32). The shells were collected from surface sediments at multiple sites across a sediment-starved shelf in the shallow sub-tropical São Paulo Bight (São Paulo State, Brazil). The resulting 14C-calibrated AAR time series, one of the largest AAR datasets compiled to date, ranges from modern to 10,307 cal yr BP, is right skewed, and represents a remarkably complete time series: the completeness of the Holocene record is 66% at 250-yr binning resolution and 81% at 500-yr binning resolution. Extensive time-averaging is observed for all sites across the sampled bathymetric range indicating long water depth-invariant survival of carbonate shells at the sediment surface with low net sedimentation rates. Benthic organisms collected from active depositional surfaces can provide multi-millennial time series of biomineral records and serve as a source of geochemical proxy data for reconstructing environmental and climatic trends throughout the Holocene at centennial resolution. Surface sediments can contain time-rich shell accumulations that record the entire Holocene, not just the present.  相似文献   

9.
The Atkan Formation in the Ayan-Yuryakh anticlinorium, Magadan province, northeastern Russia, is of great interest because of the occurrence of deposits of apparent “dropstones” and “ice rafted debris” that have been previously interpreted as glacial. Two high-precision U–Pb zircon ages, one for an intercalated volcanic tuff (262.5 ± 0.2 Ma) and the other for a boulder clast (269.8 ± 0.1 Ma) within a diamictite of the Atkan Formation, constrain the age of the Atkan Formation as Guadalupian (middle Permian). Sedimentologic study of the Atkan Formation casts doubt on the glacial nature of the diamictites. Deposition of rocks of the Atkan Formation temporally correlates with the Capitanian interglacial event in the southern hemisphere that recently was calibrated with high precision CA-TIMS. The previously proposed climate proxy record based upon warm-water foraminifera, which corresponds closely to global climate fluctuations, is compared with the glacial record of eastern Australia and indicates that the Capitanian was a time of globally warm climate. The sedimentology of Atkan Formation, the record of diversification of both fusulinids and rugosa corals, global sea-water temperature, and sea-level fluctuations agree well with high latitude paleoclimate records in northeastern Russia and eastern Australia. Major components of the Atkan Formation, the volcanic rocks, are syngenetic with the sedimentation process. The volcanic activity in the nearby regions during middle–late Permian was quite extensive.  相似文献   

10.
A 13,100-year-long high-resolution pollen and charcoal record from Foy Lake in western Montana is compared with a network of vegetation and fire-history records from the Northern Rocky Mountains. New and previously published results were stratified by elevation into upper and lower and tree line to explore the role of Holocene climate variability on vegetation dynamics and fire regimes. During the cooler and drier Lateglacial period, ca 13,000 cal yr BP, sparsely vegetated Picea parkland occupied Foy Lake as well as other low- and high-elevations with a low incidence of fire. During the warmer early Holocene, from ca 11,000–7500 cal yr BP, low-elevation records, including Foy, indicate significant restructuring of regional vegetation as Lateglacial Picea parkland gave way to a mixed forest of Pinus-Pseudotsuga-Larix. In contrast, upper tree line sites (ca >2000 m) supported Pinus albicaulis and/or P. monticola-Abies-Picea forests in the Lateglacial and early Holocene. Regionally, biomass burning gradually increased from the Lateglacial times through the middle Holocene. However, upper tree line fire-history records suggest several climate-driven decreases in biomass burning centered at 11,500, 8500, 4000, 1600 and 500 cal yr BP. In contrast, lower tree line records generally experienced a gradual increase in biomass burning from the Lateglacial to ca 8000 cal yr BP, then reduced fire activity until a late Holocene maximum at 1800 cal yr BP, as structurally complex mesophytic forests at Foy Lake and other sites supported mixed-severity fire regimes. During the last two millennia, fire activity decreased at low elevations as modern forests developed and the climate became cooler and wetter than before. Embedded within these long-term trends are high amplitude variations in both vegetation dynamics and biomass burning. High-elevation paleoecological reconstructions tend to be more responsive to long-term changes in climate forcing related to growing-season temperature. Low-elevation records in the NRM have responded more abruptly to changes in effective precipitation during the late Holocene. Prolonged droughts, including those between 1200 and 800 cal yr BP, and climatic cooling during the last few centuries continues to influence vegetation and fire regimes at low elevation while increasing temperature has increased biomass burning in high elevations.  相似文献   

11.
The relationship between the stable C-isotope composition of the soil environment and modern climate and vegetation was determined empirically along a present-day climatic transect in the eastern Mojave Desert. The δ13C of the soil CO2 and carbonates decreased with increasing elevation and plant density, even though plant assemblages at all elevations were isotopically similar. Several factors, including differences in the ratios of pedogenic of limestone calcite and differences in past vegetation, were considered as explanations of this trend, However, it appears that in the sparsely vegetated Mojave Desert, the δ13C of pedogenic carbonate is controlled by differences in plant density and biological activity. This relationship may provide a tool for assessing past vegetational densities, as long as the vegetation is isotopically homogeneous.  相似文献   

12.
The Iberian-Roman Humid Period (IRHP, 2600-1600 cal yr BP), is the most humid phase of the last 4000 yr in southern Spain as recorded in the sedimentary sequence of Zoñar Lake (37°29′00″N, 4°41′22″ W, 300 m a.s.l.). A varve chronology supported by several AMS 14C dates allows study of the lake evolution at annual scale in response to human impact and climate changes. There are four climate phases within this period: i) gradual transition (2600-2500 yr ago, 650-550 BC) from a previous arid period; ii) the most humid interval during the Iberian-Early Roman Epoch (2500-2140 yr ago, 550-190 BC); iii) an arid interval during the Roman Empire Epoch (2140-1800 yr ago, 190 BC AD 150); and iv) a humid period synchronous with the decline of the Roman Empire (1800-1600 yr ago, AD 150-350). Varve thickness and geochemical proxies show a multi-decadal cyclicity similar to modern North Atlantic Oscillation (NAO) (60, 20 years) and solar variability cycles (11 yr). The timing and the structure of this humid period is similar to that described in Eastern Mediterranean and northern European sites and supports the same large-scale climate control for northern latitudes and the Mediterranean region.  相似文献   

13.
Many pre‐Mesozoic records of Earth history are derived from shallow water carbonates deposited on continental shelves. While these carbonates contain geochemical proxy records of climate change, it is the stratal architecture of layered carbonate units that often is used to build age models based on the idea that periodic astronomical forcing of sea‐level controls the layering. Reliable age models are crucial to any interpretation of rates and durations of environmental change, but the physical processes that actually control this stratal architecture in shallow water carbonates are controversial. In particular, are upward‐shallowing stacks of carbonate beds bounded by flooding surfaces (‘parasequences’) truly a record of relative sea‐level change? The purpose of this study is to examine a tidal flat that is actively accumulating carbonate stratigraphy, and to determine the relative importance of tidal channel migration (poorly known, but investigated here) and Holocene sea‐level rise (well‐known) in controlling post‐glacial parasequence architecture. This work represents a field study of peritidal carbonate accumulation at Triple Goose Creek, north‐west Andros Island. By integrating surface facies maps with differential global positioning system topographic surveys, a quantitative relationship between facies and elevation is derived. Sedimentary facies are sensitive to elevation changes as small as 5 cm, and are responding to both internal (distance to nearest tidal channel) and external (sea‐level rise) controls. The surface maps also are integrated with 187 sediment cores that each span the entire Holocene succession. While flooding of the Triple Goose Creek area should have occurred by ca 4500 years ago, preservation of Holocene sediment did not begin until 1200 years ago. The tidal channels are shown to be stationary, or to migrate sluggishly at up to 6 cm per year. Therefore, while the location of tidal channels is responsible for the modern mosaic of surface facies, these facies and the channels that control them have not migrated substantially during the ca 1200 years of sediment accumulation at Triple Goose Creek. Once the region was channellized, vertical and lateral shifts in facies, such as the landward retreating shoreline, expanding mangrove ponds and seaward advancing inland algal marsh, are driven by changes in relative sea‐level and sediment supply, not migrating channels. While stratigraphic columns look different depending on the distance to the nearest tidal channel, the overall parasequence architecture everywhere at Triple Goose Creek records an upward‐shallowing trend controlled by the infilling of accommodation space generated by post‐glacial sea‐level rise.  相似文献   

14.
We evaluate the impact of exceptionally sparse plant cover (0-20%) and rainfall (2-114 mm/yr) on the stable carbon and oxygen composition of soil carbonate along elevation transects in what is among the driest places on the planet, the Atacama Desert in northern Chile. δ13C and δ18O values of carbonates from the Atacama are the highest of any desert in the world. δ13C (VPDB) values from soil carbonate range from −8.2‰ at the wettest sites to +7.9‰ at the driest. We measured plant composition and modeled respiration rates required to form these carbonate isotopic values using a modified version of the soil diffusion model of [Cerling (1984) Earth Planet. Sci. Lett.71, 229-240], in which we assumed an exponential form of the soil CO2 production function, and relatively shallow (20-30 cm) average production depths. Overall, we find that respiration rates are the main predictor of the δ13C value of soil carbonate in the Atacama, whereas the fraction C3 to C4 biomass at individual sites has a subordinate influence. The high average δ13C value (+4.1‰) of carbonate from the driest study sites indicates it formed—perhaps abiotically—in the presence of pure atmospheric CO218O (VPDB) values from soil carbonate range from −5.9‰ at the wettest sites to +7.3‰ at the driest and show much less regular variation with elevation change than δ13C values. δ18O values for soil carbonate predicted from local temperature and δ18O values of rainfall values suggest that extreme (>80% in some cases) soil dewatering by evaporation occurs at most sites prior to carbonate formation. The effects of evaporation compromise the use of δ18O values from ancient soil carbonate to reconstruct paleoelevation in such arid settings.  相似文献   

15.
The experiments were conducted in the open CO2 system to find out the equilibrium fractionation between the carbonate ion and CO2(g). The existence of isotopic equilibrium was checked using the two-direction approach by passing the CO2−N2 gases with different δ13C compositions (− 1.5‰ and − 23‰) through the carbonate solution with δ13C = − 4.2‰. The ΔCO3T2−−CO2(g) equilibrium fractionation is given as 6.03 ± 0.17‰ at 25 °C. Discussion is provided about the significance of carbonate complexing in determination of ΔCO3T2−−CO2(g) and ΔHCO3T−CO2(g) fractionations. Finally, an isotope numerical model of flow and kinetics of hydration and dehydroxylation is built to predict the isotopic behaviour of the system with time.  相似文献   

16.
Ion-adsorption REE deposits associated with clay minerals are the main global HREE producer. The majority of these deposits are formed by the weathering of granites in South China, but whether there is any fundamental difference between the granites in and outside South China is still unclear. Besides, an effective evaluation system of granite mineralization potential is urgently needed for HREE exploration.To answer this question, we compiled a global granite geochemical dataset from within (n = 1932) and outside (n = 6109) South China, together with a dataset of representative REE deposits in South China (n = 128). The geochemical comparation shows that the South China granites share similar REE contents with those of many granites from places outside South China. Such similarity has also been found between REE ore-related and ore-barren granites in South China. This shows that granites from outside South China could also have ore-forming potential. Warm humid climate and quasi-equalized crustal state promote chemical weathering to continuously leach REEs and store them in the weathering crust. The enrichment ratio (Rx) can be used to quantify the climatic effect between orebodies and parent rocks. The calculated average Enrichment Ratios (Rx) of LREE- and HREE-rich deposits are 2.41 and 2.68, respectively. Sufficient REE content in granite is the prerequisite for mineralization, and we propose that the combination of the minimum REE + Y (172 and 108 ppm in LREE- and HREE-rich parent rocks, respectively) and REE oxide ratio (1.32) can reveal the granite metallogenic potential. Together with the suitable tropical and temperate climate area with ion-adsorption REE deposits, we further identified certain regions with high REE mineralization potential outside South China to assist future exploration.  相似文献   

17.
Weathering rind thicknesses were measured on ∼ 200 basaltic clasts collected from three regionally extensive alluvial fill terraces (Qt 1, Qt 2, and Qt 3) preserved along the Pacific coast of Costa Rica. Mass balance calculations suggest that conversion of unweathered basaltic core minerals (plagioclase and augite) to authigenic minerals in the porous rind (kaolinite, allophane, gibbsite, Fe oxyhydroxides) is iso-volumetric and Ti and Zr are relatively immobile. The hierarchy of cation mobility (Ca ≈ Na > K ≈ Mg > Si > Al > Fe ≈ P) is similar to other tropical weathering profiles and is indicative of differential rates of mineral weathering (anorthite > albite ≈ hypersthene > orthoclase ? apatite). Alteration profiles across the cm-thick rinds document dissolution of plagioclase and augite and the growth of kaolinite, with subsequent dissolution of kaolinite and precipitation of gibbsite as weathering rinds age. The rate of weathering rind advance is evaluated using a diffusion-limited model which predicts a parabolic rate law for weathering rind thickness, rr, as a function of time, t(rr =), and an interface-limited model which predicts a linear rate law for weathering rind thickness as a function of time (rr = kappt). In these rate laws, κ is a diffusion parameter and kapp is an apparent rate constant. The rate of advance is best fit by the interface model.Terrace exposures are confined to the lower reaches of streams draining the Pacific slope near the coast where the stream gradient is less than ∼3 m/km, and terrace deposition is influenced by eustatic sea level fluctuations. Geomorphological evidence is consistent with terrace deposition coincident with sea level maxima when the stream gradient would be lowest. Assigning the most weathered regionally extensive terrace Qt 1 (mean rind thickness 6.9 ± 0. 6cm) to oxygen isotope stage (OIS) 7 (ca. 240 ka), and assuming that at time = 0 rind thickness = 0, it is inferred that terrace Qt 2 (rr = 2.9 ± 0.1 cm) is coincident with stage 5e (ca. 125 ka) and that Qt 3 (rr = 0.9 ± 0.1 cm) is consistent with OIS 3 (ca. 37 ka). These assignments yield a value of kapp of 8.6 × 10−13 cm s−1 (R2 = 0.99). Only this value satisfies both the existing age controls and yields ages coincident with sea level maxima. Using this value, elemental weathering release fluxes across a weathering rind from Qt 2 range from 6.0 × 10−9 mol Si m−2 s−1 to 2.5 × 10−11 mol K m−2 s−1. The rate of rind advance for the Costa Rican terraces is 2.8 × 10−7 m yr−1. Basalt rind formation rates in lower temperature settings described in the literature are also consistent with interface-controlled weathering with an apparent activation energy of about 50 kJ mol−1. Rates of rind formation in Costa Rica are an order of magnitude slower than reported for global averages of soil formation rates.  相似文献   

18.
Geochemical, mineralogical and biological indicators preserved in sediments are widely used to reconstruct past climate change, but proxies differ in the degree to which their utility as climate indicators has been validated via laboratory experiments, modern spatial calibrations, or down‐core comparisons with instrumental climate data. Multi‐proxy studies provide another means of evaluating interpretations of proxies. This paper presents a multi‐proxy assessment comparing 19 sub‐centennially resolved late Holocene proxy records, covering the period 300–1900 AD, from seven Icelandic marine and lacustrine core sites. We employ simple statistical comparisons between proxy reconstructions to evaluate their correlations over time and, ultimately, their utility as proxies for regional climate. Proxies examined include oxygen isotopic composition of benthic and planktonic foraminifera, abundance of the sea‐ice biomarker IP25, allochthonous quartz in marine sediments (a proxy for drift ice around Iceland), marine carbonate abundance, total organic carbon concentration, chironomid assemblages, lacustrine biogenic silica and carbon/nitrogen ratios in lake sediments. Most of the examined proxy records, including temperature and sea‐ice proxies, correlate strongly with each other over multi‐centennial timescales, and thus do appear to record changes in regional climate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Melt inclusions in kimberlitic minerals and diamonds indicate that chlorides are important constituents of mantle carbonatite melts. Besides, alkaline chlorides are important constituents of saline high-density fluids (HDFs) found in diamonds from kimberlites and placers around the world. Continuous compositional variations suggest that saline and carbonatitic HDFs could be genetically linked. However, the essence of this link remains unclear owing to the lack of data on phase relations in the chloride-carbonate systems under pressure. Here we studied subsolidus and melting phase relations in the system NaCl–CaCO3–MgCO3 at 6 GPa and 1000–1600 °C using a Kawai-type multianvil press. We found that at 1000 °C, subsolidus assemblage consists of halite, magnesite, and aragonite. At higher temperatures, the stabilization of dolomite splits the subsolidus area into two partial ternary fields: halite + magnesite + dolomite and halite + dolomite + aragonite. The minimum on the liquidus surface corresponds to the halite-dolomite-aragonite ternary eutectic, situated at 1100 °C. The eutectic melt has Ca# 89 and contains 30 wt.% NaCl (26 mol% 2NaCl). The system has two ternary peritectics: halite + dolomite = magnesite + liquid located near the ternary eutectic and magnesite + dolomite = Mg-dolomite + liquid situated between 1300 and 1400 °C. Although under dry conditions incipient melting yields carbonate-dominated melt, the addition of water facilitates the fusion of NaCl and expands the liquid field to NaCl-rich compositions with up to 70 wt.% NaCl. The obtained results favor the idea that hydrous saline melts/fluids (brines) found as inclusions in diamonds could be a lower temperature derivative of mantle carbonatite melts and disagree with the hypothesis on chloride melt generation owing to the chloride-carbonate liquid immiscibility since no such immiscibility was established. We also studied the interaction of the NaCl–CaCO3–MgCO3 system with iron metal and found that carbonate reduction produces C-bearing species (Fe0, Fe-C melt, Fe3C, Fe7C3, C0) and wüstite containing Na2O, CaO, and MgO. Besides, a carbonate chloride compound, Ca2Cl2CO3, was established among the reaction products. The interaction between NaCl-bearing carbonate melt shifts its composition toward Mg-poor and NaCl-rich. Given the above, an alternative hypothesis can be proposed, according to which the interaction of alkaline chloride-bearing carbonate melts formed in the subduction zones with the reduced mantle should be accompanied by diamond crystallization and shift the composition of the melt from carbonatitic to alkali-rich saline.  相似文献   

20.
We report 6 K–Ar ages and paleomagnetic data from 28 sites collected in Jurassic, Lower Cretaceous and Paleocene rocks of the Santa Marta massif, to test previous hypothesis of rotations and translations of this massif, whose rock assemblage differs from other basement-cored ranges adjacent to the Guyana margin. Three magnetic components were identified in this study. A first component has a direction parallel to the present magnetic field and was uncovered in all units (D = 352, I = 25.6, k = 57.35, a95 = 5.3, N = 12). A second component was isolated in Cretaceous limestone and Jurassic volcaniclastic rocks (D = 8.8, I = 8.3, k = 24.71, a95 = 13.7, N = 6), and it was interpreted as of Early Cretaceous age. In Jurassic sites with this component, Early Cretaceous K–Ar ages obtained from this and previous studies are interpreted as reset ages. The third component was uncovered in eight sites of Jurassic volcaniclastic rocks, and its direction indicates negative shallow to moderate inclinations and northeastward declinations. K–Ar ages in these sites are of Early (196.5 ± 4.9 Ma) to early Late Jurassic age (156.6 ± 8.9 Ma). Due to local structural complexity and too few Cretaceous outcrops to perform a reliable unconformity test, we only used two sites with (1) K–Ar ages, (2) less structural complexity, and (3) reliable structural data for Jurassic and Cretaceous rocks. The mean direction of the Jurassic component is (D = 20.4, I = −18.2, k = 46.9, a95 = 5.1, n = 18 specimens from two sites). These paleomagnetic data support previous models of northward along-margin translations of Grenvillian-cored massifs. Additionally, clockwise vertical-axis rotation of this massif, with respect to the stable craton, is also documented; the sense of rotation is similar to that proposed for the Perija Range and other ranges of the southern Caribbean margin. More data is needed to confirm the magnitudes of rotations and translations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号