首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Great earthquakes of variable magnitude at the Cascadia subduction zone   总被引:1,自引:0,他引:1  
Comparison of histories of great earthquakes and accompanying tsunamis at eight coastal sites suggests plate-boundary ruptures of varying length, implying great earthquakes of variable magnitude at the Cascadia subduction zone. Inference of rupture length relies on degree of overlap on radiocarbon age ranges for earthquakes and tsunamis, and relative amounts of coseismic subsidence and heights of tsunamis. Written records of a tsunami in Japan provide the most conclusive evidence for rupture of much of the plate boundary during the earthquake of 26 January 1700. Cascadia stratigraphic evidence dating from about 1600 cal yr B.P., similar to that for the 1700 earthquake, implies a similarly long rupture with substantial subsidence and a high tsunami. Correlations are consistent with other long ruptures about 1350 cal yr B.P., 2500 cal yr B.P., 3400 cal yr B.P., 3800 cal yr B.P., 4400 cal yr B.P., and 4900 cal yr B.P. A rupture about 700-1100 cal yr B.P. was limited to the northern and central parts of the subduction zone, and a northern rupture about 2900 cal yr B.P. may have been similarly limited. Times of probable short ruptures in southern Cascadia include about 1100 cal yr B.P., 1700 cal yr B.P., 3200 cal yr B.P., 4200 cal yr B.P., 4600 cal yr B.P., and 4700 cal yr B.P. Rupture patterns suggest that the plate boundary in northern Cascadia usually breaks in long ruptures during the greatest earthquakes. Ruptures in southernmost Cascadia vary in length and recurrence intervals more than ruptures in northern Cascadia.  相似文献   

2.
《Quaternary Science Reviews》2005,24(10-11):1203-1216
This paper presents preliminary relative sea level curves for the Marguerite Bay region and for the South Shetland Islands. The Marguerite Bay curve is constrained by both new and previously published 14C dates on penguin remains and shells, and on two isolation basins dating back to 6500 14C yr BP. Extrapolation back to the marine limit yields a minimum deglaciation date for Marguerite Bay of ca 9000 14C yr BP. Analysis of beach clasts suggests that there was a period of increased wave activity, perhaps related to a reduction in summer sea-ice extent, between ca 3500 and ca 2400 14C yr BP. The curve for the South Shetland Islands is derived entirely from published 14C dates from isolation basins and on whalebone, penguin bone and seal bone. The curve shows an initial relative sea level fall, which was interrupted by a period in the mid-Holocene when relative sea level rose to a highstand of between 14.5 and 16 m above mean sea level (amsl), before falling again.  相似文献   

3.
The shoreline displacement history of the eastern James Bay lowlands in the last 7 ka has been investigated by means of AMS radiocarbon dating of sediments cored from wetlands. We present twelve radiocarbon dates on macrofossils from six sites spread along a gradient of increasing land age and elevation. Palynomorph analysis (pollen, spores, and dinoflagellate cysts) was used to define the isolation stratigraphy. During the last 7 ka the shoreline elevation has regressed at a decreasing rate. The rate of shoreline emergence was initially rapid (6. 5 m/ 100 yr) between 6850 and  6400 cal yr BP then slowed down to 1.4– 2 m/ 100 yr during the late Holocene. Examination of previous relative sea level data based upon mollusc shells reveals high levels of uncertainty that mask potential temporal variability.  相似文献   

4.
The outer coast of Finnmark in northern Norway is where the former Fennoscandian and Barents Sea ice sheets coalesced. This key area for isostatic modelling and deglaciation history of the ice sheets has abundant raised shorelines, but only a few existing radiocarbon dates constrain their chronology. Here we present three Holocene sea level curves based on radiocarbon dated deposits from isolation basins at the outermost coast of Finnmark; located at the islands Sørøya and Rolvsøya and at the Nordkinn peninsula. We analysed animal and plant remains in the basin deposits to identify the transitions between marine and lacustrine sediments. Terrestrial plant fragments from these transitions were then radiocarbon dated. Radiocarbon dated mollusk shells and marine macroalgae from the lowermost deposits in several basins suggest that the first land at the outer coast became ice free around 14,600 cal yr BP. We find that the gradients of the shorelines are much lower than elsewhere along the Norwegian coast because of substantial uplift of the Barents Sea. Also, the anomalously high elevation of the marine limit in the region can be attributed to uplift of the adjacent seafloor. After the Younger Dryas the coast emerged 1.6–1.0 cm per year until about 9500–9000 cal yr BP. Between 9000 and 7000 cal yr BP relative sea level rose 2–4 m and several of the studied lakes became submerged. At the outermost locality Rolvsøya, relative sea level was stable at the transgression highstand for more than 3000 years, between ca 8000 and 5000 cal yr BP. Deposits in five of the studied lakes were disturbed by the Storegga tsunami ca 8200–8100 cal yr BP.  相似文献   

5.
Holocene evolution and human occupation of the Sixteen Mile Beach barrier dunes on the southwest coast of South Africa between Yzerfontein and Saldanha Bay are inferred from the radiocarbon ages of calcareous dune sand, limpet shell (Patella spp.) manuports and gull-dropped white mussel shells (Donax serra). A series of coast-parallel dunes have prograded seaward in response to an overall marine regression since the mid-Holocene with dated shell from relict foredunes indicating periods of shoreline progradation that correspond to drops in sea level at around 5900, 4500 and 2400 calibrated years before the present (cal yr B.P.). However, the active foredune, extensively covered by a layer of gull-dropped shell, has migrated 500 m inland by the recycling of eroded dune sand in response to an approximate 1 m sea level rise over the last 700 yr. Manuported limpet shells from relict blowouts on landward vegetated dunes indicate human occupation of coastal dune sites at 6200 and 6000 cal yr B.P. and help to fill the mid-Holocene gap in the regional archaeological record. Coastal midden shells associated with small hearth sites exposed in blowouts on the active foredune are contemporaneous (1600-500 cal yr B.P.) with large midden sites on the western margin of Langebaan Lagoon and suggest an increase in marine resource utilisation associated with the arrival of pastoralism in the Western Cape.  相似文献   

6.
Chironomid remains from a mid-elevation lake in the Sierra Nevada, California, were used to estimate quantitative summer surface water temperatures during the past ∼15,000 yr. Reconstructed temperatures increased by ∼3°C between lake initiation and the onset of the Holocene at ∼10,600 cal yr BP (calibrated years before present). Temperatures peaked at 6500 cal yr BP, displayed high variability from 6500 to 3500 cal yr BP, and stabilized after 3500 cal yr BP. This record generally tracks reconstructed Santa Barbara Basin sea surface temperatures (SSTs) through much of the Holocene, highlighting the correspondence between SST variability and California land temperatures during this interval.  相似文献   

7.
We present new results for relative sea‐level change for southern Greenland for the interval from 9000 cal. yr BP to the present. Together with earlier work from the same region this yields a nearly complete record from the time of deglaciation to the present. Isolation and/or transgression sequences in one lake and five tidal basins have been identified using lithostratigraphic analyses, sedimentary characteristics, magnetic susceptibility, saturated induced remanent magnetisation (SIRM), organic and carbonate content, and macrofossil analyses. AMS radiocarbon dating of macrofossils and bulk sediment samples provides the timescale. Relative sea level fell rapidly and reached present‐day level at ~9300 cal. yr BP and continued falling until at least 9000 cal. yr BP. Between 8000 and 6000 cal. yr BP sea level reached its lowest level of around ~10 m below highest astronomical tide. At around 5000 cal. yr BP, sea level had reached above 7.8 m below highest astronomical tide and slowly continued to rise, not reaching present‐day sea level until today. The isostatic rebound caused rapid isolation of the basins that are seen as distinct isolation contacts in the sediments. In contrast, the late Holocene transgressions are less well defined and occurred over longer time intervals. The late Holocene sea‐level rise may be a consequence of isostatic reloading by advancing glaciers and/or an effect of the delayed response to isostatic rebound of the Laurentide ice sheet. One consequence of this transgression is that settlements of Palaeo‐Eskimo cultures may be missing in southern Greenland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Forty-eight new and previously published radiocarbon ages constrain deglacial and postglacial sea levels on southern Vancouver Island, British Columbia. Sea level fell rapidly from its high stand of about +75 m elevation just before 14 000 cal BP (12 000 radiocarbon yrs BP) to below the present shoreline by 13 200 cal BP (11 400 radiocarbon years BP). The sea fell below its present level 1000 years later in the central Strait of Georgia and 2000 years later in the northern Strait of Georgia, reflecting regional differences in ice sheet retreat and downwasting. Direct observations only constrain the low stand to be below ?11 m and above ?40 m. Analysis of the crustal isostatic depression with equations utilizing exponential decay functions appropriate to the Cascadia subduction zone, however, places the low stand at ?30 ± 5 m at about 11 200 cal BP (9800 BP). The inferred low stand for southern Vancouver Island, when compared to the sea-level curve previously derived for the central Strait of Georgia to the northwest, generates differential isostatic depression that is consistent with the expected crustal response between the two regions. Morphologic and sub-bottom features previously interpreted to indicate a low stand of ?50 to ?65 m are re-evaluated and found to be consistent with a low stand of ?30 ± 5 m. Submarine banks in eastern Juan de Fuca Strait were emergent at the time of the low stand, but marine passages persisted between southern Vancouver Island and the mainland. The crustal uplift presently occurring in response to the Late Pleistocene collapse of the southwestern sector of the Cordilleran Ice Sheet amounts to about 0.1 mm/yr. The small glacial isostatic adjustment rate is a consequence of low-viscosity mantle in this tectonically active region.  相似文献   

9.
Understanding how Holocene sea levels influenced coastal wetland development in the Caribbean will aid wetland management in the context of predicted sea level rise. Nine radiocarbon dates from the Maracas and Nariva Swamps on wave-dominated coasts from Trinidad, show sea level was –9 m approximately 7000 yr BP, and rose gradually to –2 m by 2000 yr BP. Since then there may have been isostatic readjustment. Wetlands developed with a transgression of dry upland habitats by rising seas and the facultative halophyte Rhizophora colonized the new brackish water environment. A freshwater plant community gradually replaced the Rhizophora as the marine influence decreased. At Maracas, higher sea levels caused wetland retreat as beach and lagoon habitats migrated inland. Sand ridges in Nariva Swamp indicate that, as in Maracas Swamp, sea level rise created beaches and lagoons, but that these landforms prograded as additional nearshore sediments were deposited. Basins were also filled with sediment delivered by streams that drain the watershed, and by mangrove peat accumulation.  相似文献   

10.
Deglacial and Holocene relative sea level (RSL) in the Canadian Beaufort Sea was influenced by the timing and extent of glacial ice in the Mackenzie River corridor and adjacent coastal plains. Considerable evidence indicates extensive ice cover in this region of northwestern Canada during the Late Wisconsinan. However, no absolute ages exist to constrain maximum RSL lowering before the late Holocene (4.2–0 ka). In 1984, the Geological Survey of Canada drilled an 81.5‐m‐deep borehole in the western Mackenzie Trough at 45 m water depth (MTW01). The lower 52.5 m of the borehole was interpreted as a deltaic progradational sequence deposited during a period of rising sea level. The upper 29 m was described as foraminifer‐bearing marine sediments deposited after transgression of the site, when RSL rose above ~−74 m. Here, we present radiocarbon measurements from MTW01, acquired from benthic foraminifera, mollusc fragments and particulate organic carbon in the >63 μm fraction (POC>63 μm) in an attempt to constrain the chronology of sediments within this borehole and date the timing of transgression. The deepest carbonate macrofossil was acquired from 8 m above the transgressive surface (equivalent to 21 m b.s.l.), where mollusc fragments returned a date of 9400 +180–260 cal. a BP (2σ). This provides the oldest constraint on Holocene sea‐level lowering in the region, and implies that transgression at this site occurred prior to the early Holocene. Ages obtained from the lower 52.5 m of the borehole are limited to POC>63 μm samples. These indicate that progradational sediments were deposited rapidly after 24 820 +390–380 cal. a BP (2σ). Due to the incorporation of older reworked organic matter, the actual age of progradation is likely to be younger, occurring after Late Wisconsinan glacial ice retreated from the coast.  相似文献   

11.
Shoreline displacement in the eastern part of the Gulf of Finland during the past 9000 radiocarbon years was reconstructed by studying a total of 10 isolated lake and mire basins located in Virolahti in southeastern Finland and on the Karelian Isthmus, and in Ingermanland in Russia. Study methods were diatom analyses, sediment lithostratigraphical interpretation and radiocarbon dating. In southeastern Finland, the marine (Litorina) transgression maximum occurred ca. 6500–6200 14C yr BP (7400–7100 cal. yr BP). In areas of the slower land uplift rate on the Karelian Isthmus and in Ingermanland, the transgression maximum occurred ca. 6400–6000 14C yr BP (7300–6800 cal. yr BP). The highest Litorina shoreline is located at ca. 23 m above present sea-level in southeastern Finland, whereas in the eastern part of the Karelian Isthmus, near St. Petersburg, it is located at ca. 8 m above present sea-level. The amplitude of the Litorina transgression in Virolahti area is ca. 4 m, whereas on the Karelian Isthmus and in Ingermanland the amplitude has varied between 5 and 7 m. The regional differences between areas are solely due to different glacio-isostatic land uplift rates. The seven basins studied in this research were connected to the Baltic Sea basin during the Litorina Sea stage and their diatom and lithostratigraphical records indicate a single, smooth Litorina transgression.  相似文献   

12.
Laguna de la Leche, north coastal Cuba, is a shallow (≤ 3 m), oligohaline (∼ 2.0-4.5‰) coastal lake surrounded by mangroves and cattail stands. A 227-cm core was studied using loss-on-ignition, pollen, calcareous microfossils, and plant macrofossils. From ∼6200 to ∼ 4800 cal yr BP, the area was an oligohaline lake. The period from ∼ 4800 to ∼ 4200 cal yr BP saw higher water levels and a freshened system; these changes are indicated by an increase in the regional pollen rain, as well as by the presence of charophyte oogonia and an increase in freshwater gastropods (Hydrobiidae). By ∼ 4000 cal yr BP, an open mesohaline lagoon had formed; an increase in salt-tolerant foraminifers suggests that water level increase was driven by relative sea level rise. The initiation of Laguna de la Leche correlates with a shift to wetter conditions as indicated in pollen records from the southeastern United States (e.g., Lake Tulane). This synchronicity suggests that sea level rise caused middle Holocene environmental change region-wide. Two other cores sampled from mangrove swamps in the vicinity of Laguna de la Leche indicate that a major expansion of mangroves was underway by ∼ 1700 cal yr BP.  相似文献   

13.
Thirty-six new and previously published radiocarbon dates constrain the relative sea-level history of Arviat on the west coast of Hudson Bay. As a result of glacial isostatic adjustment (GIA) following deglaciation, sea level fell rapidly from a high-stand of nearly 170 m elevation just after 8000 cal yr BP to 60 m elevation by the mid Holocene (~ 5200 cal yr BP). The rate of sea-level fall decreased in the mid and late Holocene, with sea level falling 30 m since 3000 cal yr BP. Several late Holocene sea-level measurements are interpreted to originate from the upper end of the tidal range and place tight constraints on sea level. A preliminary measurement of present-day vertical land motion obtained by repeat Global Positioning System (GPS) occupations indicates ongoing crustal uplift at Arviat of 9.3 ± 1.5 mm/yr, in close agreement with the crustal uplift rate inferred from the inferred sea-level curve. Predictions of numerical GIA models indicate that the new sea-level curve is best fit by a Laurentide Ice Sheet reconstruction with a last glacial maximum peak thickness of ~ 3.4 km. This is a 30–35% thickness reduction of the ICE-5G ice-sheet history west of Hudson Bay.  相似文献   

14.
A foraminiferal transfer function for mean tide level (MTL) is used in combination with AMS radiocarbon dated material to construct a record of relative sea‐level (RSL) change from Poole Harbour, southern Britain. These new data, based on multiple cores from duplicate sites, indicate four phases of change during the last 5000 cal. (calendar) yr: (i) rising RSL between ca. 4700 cal. yr BP and ca. 2400 cal. yr BP; (ii) stable to falling RSL from ca. 2400 cal. yr BP until ca. 1200 cal. yr BP; (iii) a brief rise in RSL from ca. 1200 cal. yr BP to ca. 900 cal. yr BP, followed by a period of stability; (iv) a recent increase in the rate of RSL rise from ca. 400–200 cal. yr BP until the present day. In addition, they suggest that the region has experienced long‐term crustal subsidence at a rate of 0.5 mm C14 yr?1. Although this can account for the overall rise in MTL observed during the past 2500 yr, it fails to explain the changes in the rate of rise during this period. This implies that the phases of RSL change recorded in the marshes of Poole Harbour reflect tidal range variations or ‘eustatic’ fluctuations in sea‐level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Plant macrofossils from 38 packrat middens spanning the last ~ 33,000 cal yr BP record vegetation between ~ 650 and 900 m elevation along the eastern escarpment of the Sierra San Pedro Mártir, northern Baja California. The middens span most of the Holocene, with a gap between ~ 4600 and 1800 cal yr BP, but coverage in the Pleistocene is uneven with a larger hiatus between 23,100 and 14,400 cal yr BP. The midden flora is relatively stable from the Pleistocene to Holocene. Exceptions include Pinus californiarum, Juniperus californica and other chaparral elements that were most abundant > 23,100 cal yr BP and declined after 14,400 cal yr BP. Despite being near the chaparral/woodland-desertscrub ecotone during glacial times, the midden assemblages reflect none of the climatic reversals evident in the glacial or marine record, and this is corroborated by a nearby semi-continuous pollen stratigraphy from lake sediments. Regular appearance of C4 grasses and summer-flowering annuals since 13,600 cal yr BP indicates occurrence of summer rainfall equivalent to modern (JAS average of ~ 80–90 mm). This casts doubt on the claim, based on temperature proxies from marine sediments in the Guaymas Basin, that monsoonal development in the northern Gulf and Arizona was delayed until after 6200 cal yr BP.  相似文献   

16.
A sediment core 7.2 m long from Lake Mirabad, Iran, was examined for loss-on-ignition, mineralogy, oxygen-isotopic composition of authigenic calcite, and trace-element composition of ostracodes to complement earlier pollen and ostracode-assemblage studies. Pollen, ostracode-inferred lake level, and high Sr/Ca ratios indicate that the early Holocene (10000 to 6500 cal yr BP) was drier than the late Holocene. Low δ18O values during this interval are interpreted as resulting from winter-dominated precipitation, characteristic of a Mediterranean climate. Increasing δ18O values after 6500 cal yr BP signal a gradual increase in spring rains, which are present today. A severe 600-yr drought occurred at ca. 5500 cal yr BP, shortly after the transition from pistachio-almond to oak forest. During the late Holocene, two milder droughts occurred at about 1500 and 500 cal yr BP. Within the resolution of the record, no drought is evident during the collapse of the Akkadian empire (4200–3900 cal yr BP). Rather, a decrease in δ18O values to early-Holocene levels may indicate the return to a Mediterranean precipitation regime.  相似文献   

17.
We present a fossil pollen analysis from a swamp forest in the semiarid coast of Chile (32°05′S; 71°30′W), at the northern influence zone of southern westerly wind belt. A ∼10,000 cal yr BP (calendar years before 1950) palynological sequence indicates a humid phase characterized by dense swamp forest taxa dated between ∼9900 and 8700 cal yr BP. The presence of pollen-starved sediments with only scant evidence for semiarid vegetation indicates that extreme aridity ensued until ∼5700 cal yr BP. The swamp forest recovered slowly afterwards, helped by a significant increase in moisture at ∼4200 cal yr BP. A new swamp forest contraction suggests that another slightly less intense drought occurred between ∼3000 and 2200 cal yr BP. The swamp forest expansion begins again at ∼2200 cal yr BP, punctuated by a highly variable climate. Comparisons between the record presented here with other records across the region imply major variations in the extent of the southern westerlies during the Holocene. This variability could have been caused either by latitudinal displacements from the present mean position of southern westerlies wind belt or by changes in the intensity of the South Pacific Subtropical Anticyclone, both of which affect winter precipitation in the region.  相似文献   

18.
High-resolution pollen and magnetic susceptibility (MS) analyses have been carried out on a sediment core taken from a high-elevation alpine bog area located in Sierra Nevada, southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen and Pediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen record shows a progressive aridification since 7000 cal yr BP that occurred in two steps, first shown by a decrease in Pinus, replaced by Poaceae from 7000 to 4600 cal yr BP and then by Cyperaceae, Artemisia and Amaranthaceae from 4600 to 1200 cal yr BP. Pediastrum also decreased progressively and totally disappeared at ca. 3000 yr ago. The progressive aridification is punctuated by periodically enhanced drought at ca. 6500, 5200 and 4000 cal yr BP that coincide in timing and duration with well-known dry events in the Mediterranean and other areas. Since 1200 cal yr BP, several changes are observed in the vegetation that probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the bog, Pinus reforestation and Olea cultivation at lower elevations.  相似文献   

19.
More than 100 radiocarbon dates of penguin guano and remains, shells and seal skin afford ages for raised beaches adjacent to Terra Nova Bay, Antarctica. These dates permit construction of a new relative sea‐level curve that bears on the timing of deglaciation. Recession of the Ross Sea ice‐sheet grounding line from Terra Nova Bay occurred no earlier than 7200 14C yr (8000 cal. yr) BP. Retreat along the Victoria Land coast may have been rapid, possibly contributing to eustatic sea‐level rise centred at ca. 7600 cal. yr BP. The presence of a significant amount of ice remaining in the Ross Sea Embayment in Holocene time lessens the chance that Antarctica contributed significantly to meltwater pulse 1A several thousand years earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Cores from the salt marshes along the drowned melt-water valley of river Varde Å in the Danish Wadden Sea have been dated and analysed (litho- and biostratigraphically) to reconstruct the Holocene geomorphologic evolution and relative sea level history of the area. The analysed cores cover the total post-glacial transgression, and the reconstructed sea level curve represents the first unbroken curve of this kind from the Danish Wadden Sea, including all phases from the time where sea level first reached the Pleistocene substrate of the area. The sea level has been rising from − 12 m below the present level at c. 8400 cal yr BP, interrupted by two minor drops of < 0.5 m at c. 5500 cal yr BP and 1200 cal yr BP, and one major drop of ∼ 1.5 m at c. 3300 cal yr BP. Sediment deposition has been able to keep pace with sea level rise, and the Holocene sequence consists in most places of clay atop a basal peat unit overlying sand of Weichselian age and glacio-fluvial origin. In its deepest part, the basal peat started to form around 8400 cal yr BP, and reached a thickness of up to 3.5 m. This thickness is about half of the original, when corrected for auto-compaction. The superimposed clay contains small (63-355 μm) red iron stains in the top and bottom units, and foraminifers of the calcareous type in the middle. The fact that iron stains and foraminifers in no cases coexist, but always exclude each other is interpreted as a result of the difference between salt-marsh facies (iron stains) and tidal-flat facies (foraminifers). This represents a novel and easy way to distinguish between these two otherwise often undistinguishable sedimentary facies in the geological record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号