首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New accelerator mass spectrometer radiocarbon ages from gastropods in shore deposits within the pluvial Lake Chewaucan basin, combined with stratigraphical and geomorphological evidence, identify an abrupt rise and fall of lake level at ca. 12 14C ka. The lake‐level high is coeval with lake‐level lows in the well‐dated records of palaeolakes Bonneville and Lahontan, and with a period of relatively wet conditions in the more southerly Owens Lake basin. This spatial pattern of pluvial lake levels in the western USA at 12 14C ka indicates a variable synoptic response to climate forcing at this time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reports on recent multiproxy research conducted to determine the chronology of lake-level fluctuations recorded in sediments from a natural exposure at a classic Bonneville basin site. Grain size, carbonate percentage, magnetic susceptibility, amount of charcoal, and diatom community composition data were collected from the 16 lacustrine units that compose the 122 cm stratigraphic column in Stansbury Gulch. Trends observed in the measured proxies reveal several significant changes in lake level, and thereby effective moisture, over the approximately 14,500 yr time span represented by the sediments. Results (1) verify the effectiveness of the multiproxy approach in Bonneville basin studies, which has been underutilized in this region, (2) reaffirm the double nature of Lake Bonneville's Stansbury oscillation, (3) suggest a previously undocumented post-Gilbert highstand of Great Salt Lake, and (4) identify possible teleconnections between climate events in the Bonneville basin and events in the North Atlantic at about 20,500 and 7500 14C yr BP.  相似文献   

3.
《International Geology Review》2012,54(16):2030-2059
Seismic and sequence stratigraphic analysis of deep-marine forearc basin fill (Great Valley Group) in the central Sacramento Basin, California, reveals eight third-order sequence boundaries within the Cenomanian to mid-Campanian second-order sequences. The third-order sequence boundaries are of two types: Bevelling Type, a relationship between underlying strata and onlapping high-density turbidites; and Entrenching Type, a significantly incised surface marked by deep channels and canyons carved during sediment bypass down-slope. Condensed sections of hemipelagic strata draping bathymetric highs and onlapped by turbidites form a third important type of sequence-bounding element, Onlapped Drapes. Five tectonic and sedimentary processes explain this stratigraphic architecture: (1) subduction-related tectonic tilting and deformation of the basin; (2) avulsion of principal loci of submarine fan sedimentation in response to basin tilting; (3) deep incision and sediment bypass; (4) erosive grading and bevelling of tectonically modified topography by sand-rich, high-density turbidite systems; and (5) background hemipelagic sedimentation. The basin-fill architecture supports a model of subduction-related flexure as the principal driver of forearc subsidence and uplift during the Late Cretaceous. Subduction-related tilting of the forearc and growth of the accretionary wedge largely controlled whether and where the Great Valley turbiditic sediments accumulated in the basin. Deeply incised surfaces of erosion, including submarine canyons and channels, indicate periods of turbidity current bypass to deeper parts of the forearc basin or the trench. Fluctuations in sediment supply likely also played an important role in evolution of basin fill, but effects of eustatic fluctuations were overwhelmed by the impact of basin tectonics and sediment supply and capture. Eventual filling and shoaling of the Great Valley forearc during early Campanian time, coupled with dramatically reduced subsidence, correlate with a change in plate convergence, presumed flat-slab subduction, cessation of Sierran arc volcanism, and onset of Laramide orogeny in the retroarc.  相似文献   

4.
We analyzed the clay mineral assemblages, content and mineralogical characteristics of Hole U1438A sediment recovered from Amami Sankaku Basin during International Ocean Discovery Program (IODP) expedition 351. The results show that the clay minerals are mainly composed of illite (average 57%), smectite (average 26%), chlorite (average 14%) and minor kaolinite(average 3%). The crystallinity of illite in all samples are good (<0.4 Δ° 2θ), and the chemical indexes of illite in all samples are low (<0.4). Both indicate that illite in Hole U1438A formed in cold and dry climate. By comparing clay mineral assemblages of hole U1438A and the potential sediment sources, we suggest that smectite be mainly derived from the volcanic materials around Amami Sankaku Basin. Illite, chlorite and kaolinite are mainly derived from the Asian dust. The ratios of (illite+chlorite)/smectite show a phased increase over the last 350 ka, which is consistent with the cold and drying trend of the Asian continent since late Pleistocene. The high ratios of (illite+chlorite)/smectite and (illite+chlorite)/kaolinite during glacial period indicate that much more Asian dust was input into the Amami Sankaku Basin, which are responded to the aridity of Asian continent and strengthened east Asian Monsoon during glacial period.  相似文献   

5.
This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages <100 yr indicating near, if not complete, solar resetting of luminescence prior to deposition. Beach ridges that yield SAR ages <2000 yr show general agreement with corresponding 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.  相似文献   

6.
刘俊英  王海雷 《地质学报》2007,81(12):1652-1657,I0004
本文研究了滇西北地区金沙江小中甸盆地两条剖面(A和B)的介形类组合特征。据地层沉积特征和介形虫分布规律,结合光释光测年数据和野外调查研究,初步认为滇西北金沙江小中甸盆地存在倒数第二次冰期末期和末次冰期早冰阶的沉积,气候以冷湿为主,间以短暂的温干、冷干变化。  相似文献   

7.
Authigenic calcite silts at Wadi Midauwara in Kharga Oasis, Egypt, indicate the prolonged presence of surface water during the Marine Isotope Stage 5e pluvial phase recognized across North Africa. Exposed over an area of  4.25 km2, these silts record the ponding of water derived from springs along the Libyan Plateau escarpment and from surface drainage. The δ18O values of these lacustrine carbonates (− 11.3‰ to − 8.0‰ PDB), are too high to reflect equilibrium precipitation with Nubian aquifer water or water of an exclusively Atlantic origin. Mg/Ca and Sr/Ca of the silts have a modest negative covariance with silt δ18O values, suggesting that the water may have experienced the shortest residence time in local aquifers when the water δ18O values were highest. Furthermore, intra-shell δ18O, Sr/Ca, and Ba/Ca analyses of the freshwater gastropod Melanoides tuberculata are consistent with a perennially fresh water source, suggesting that strong evaporative effects expected in a monsoonal climate did not occur, or that dry season spring flow was of sufficient magnitude to mute the effects of evaporation. The input of a second, isotopically heavier water source to aquifers, possibly Indian Ocean monsoonal rain, could explain the observed trends in δ18O and minor element ratios.  相似文献   

8.
系统的成矿背景、矿床地质特征、成矿流体和成矿物质示踪、成矿时代和成矿模式的对比研究,表明美国"大盆地"与我国右江盆地(滇黔桂"金三角")卡林型金矿存在许多相似之处.包括:(1)矿集区均位于某一盆地范围内,大地构造演化史类似,均经历了大陆裂解→被动大陆边缘沉积→挤压造山→伸展变形等过程.成矿发生在造山后的伸展阶段;(2)矿床成带分布和聚集,容矿岩石以含钙质沉积岩为特征,与岩浆岩没有成因联系,同生正断层和构造高点是重要的控矿构造;(3)成矿作用相似,热液蚀变具特征的去碳酸盐化,含砷黄铁矿是主要的载金矿物,金以显微-次显微状赋存于黄铁矿的富砷环带中;(4)成矿流体具中低温,偏还原,弱酸性的特点,同位素示踪表明流体和物质来源比较复杂,没有单一的来源;(5)矿集区内矿床形成于一个很短的时间段内,表明矿床的形成受控于统一的动力学背景;(6)均缺乏一个被广泛认同的成矿模式.同时,两地的卡林型矿床也存在若干差异:①成矿前的构造背景复杂程度不一样;②赋矿地层层位不一样;③成矿时代不同;④成矿模式中关注的重点不同.根据两国卡林型金矿对比的结果,认为我国滇黔桂"金三角"仍有很大的找矿潜力.成矿时代、成矿流体来源、成矿地球动力学背景以及成矿模式仍将是今后研究的主要方向.  相似文献   

9.
The Great Sand Dunes National Park and Preserve (GSDNPP) in the San Luis Valley, Colorado, contains a variety of eolian landforms that reflect Holocene drought variability. The most spectacular is a dune mass banked against the Sangre de Cristo Mountains, which is fronted by an extensive sand sheet with stabilized parabolic dunes. Stratigraphic exposures of parabolic dunes and associated luminescence dating of quartz grains by single-aliquot regeneration (SAR) protocols indicate eolian deposition of unknown magnitude occurred ca. 1290-940, 715 ± 80, 320 ± 30, and 200-120 yr ago and in the 20th century. There are 11 drought intervals inferred from the tree-ring record in the past 1300 yr at GSDNPP potentially associated with dune movement, though only five eolian depositional events are currently recognized in the stratigraphic record. There is evidence for eolian transport associated with dune movement in the 13th century, which may coincide with the “Great Drought”, a 26-yr-long dry interval identified in the tree ring record, and associated with migration of Anasazi people from the Four Corners areas to wetter areas in southern New Mexico. This nascent chronology indicates that the transport of eolian sand across San Luis Valley was episodic in the late Holocene with appreciable dune migration in the 8th, 10-13th, and 19th centuries, which ultimately nourished the dune mass against the Sangre de Cristo Mountains.  相似文献   

10.
Sedimentary features, mineralogy, bulk geochemical composition, stable isotope analyses and pollen data from sediment cores were used to reconstruct the Late Quaternary depositional evolution of the Salada Mediana playa lake (central Ebro Basin, northeastern Spain). The 150-cm-long sediment core sequence is composed of gypsum- and dolomite-rich muds (Lower and Middle sections) and black, laminated, calcite-bearing sediments (Upper section). The Salada Mediana formed as a karstic depression in the Miocene gypsum substratum during the Late Pleistocene. The Lower section was deposited in a sulphate–carbonate saline lake that ended with a period of desiccation and basin floor deflation. Subsequent deposition (Middle section) took place in a playa-lake system. Two cycles of lower water table and expanded saline mud flats occurred. The Holocene sequence is missing, probably as a result of aeolian erosion. Sedimentation resumed only a few centuries ago, and saline pan environments dominated until modern times. The Salada Mediana facies succession was mainly governed by fluctuations in the hydrological balance, brine composition, and salinity; however, aeolian processes (detrital input and deflation) and recycling of previously precipitated salts also played a significant role.  相似文献   

11.
This paper reexamines the stratigraphy, sources, and paleoclimatic significance of Holocene Bignell Loess in the central Great Plains. A broadly similar sequence of loess depositional units and paleosols was observed in thick Bignell Loess sections up to 300 km apart, suggesting that these sections record major regional changes in the balance between dust deposition and pedogenesis. New optical ages, together with previously reported radiocarbon ages, indicate Bignell Loess deposition began 9000–11,000 yr ago and continued into the late Holocene; some Bignell Loess is <1000 yr old. There is little evidence that Holocene Loess was derived from flood plain sources, as previously proposed. Instead, thick Bignell Loess occurs mainly near the downwind margins of inactive dune fields, particularly atop escarpments facing the dunes. Thus, the immediate loess source was dust produced when the dunes were active. Previous work indicates that widespread episodes of dune activity are likely to have resulted from drier-than-present climatic conditions. The regionally coherent stratigraphy of Bignell Loess can be interpreted as a near-continuous record of climatically driven variation in dune field activity throughout the Holocene.  相似文献   

12.
The drainage evolution and valley development of the Jinsha River is an important issue constantly concerned by researchers in geology and geomorphology. Despite hundreds of years of research, there is a big dispute on the formation time and the evolution process of the fluvial valley. Fluvial terraces are very important geomorphic markers for studying the formation and evolution of the fluvial valley. Through field investigation combined with Electron Spin Resonance (ESR) dating, we confirmed that 5 fluvial terraces were formed, and then preserved, along the course of the Jinsha River near the Longjie, which are all strath terraces. Among them, T5 developed on the base rock, with an age of (78±12) ka; all T4~T1 developed on the lacustrine sediments, named Longjie Group by Chinese, with an age of (29±1.4) ka, (26±2.4) ka, (23±1.4) ka, (18±1.7) ka, respectively. Compared with the global and regional climate change history, the terraces are all the result of the river responding to the climate change. T5 formed at MIS 5/4, and T4~T1 formed at the period of regional climate fluctuation. The relationship of terraces and the Longjie Formation, combined with sedimentary characteristics analysis demonstrate that the Longjie Formation is landslide dammed lake sediment. The landslide and blocking events.seriously influenced the valley evolution, inhibiting the river incising, and making the valley evolution defer to the mode of “cut-landside-damming-fill-cut” in the period of Late Pleistocene. Synthesized studies of the terraces and the correlative sediments indicate that the formation of the Jinsha River valley may have begun in the late Early Pleistocene.  相似文献   

13.
Field, micromorphological, pollen, whole soil (XRF), and stable isotope geochemical methods were used to evaluate the latest Pleistocene to Holocene climate record from a floodplain-terrace system in southeastern West Virginia. A late Pleistocene (22,940 ± 150 14C yr B.P.) silt paleosol with low-chroma colors formed from fluviolacustrine sediment deposited during the last glacial maximum (Wisconsinan) and records a cooler full-glacial paleoclimate. Fluvial gravel deposited between the latest Pleistocene and earliest Holocene (prior to 6360 ± 40 14C yr B.P.) was weathered in the middle Holocene under warmer, drier climate conditions, possibly correlated with the Hypsithermal and Altithermal Events of the eastern and southwestern United States, respectively. The glacial to interglacial climate shift is recorded by: (1) changes from a poorly drained landscape with fine-textured soil, characterized by high organic C and redoximorphic features related to Fe removal and concentration, to a well-drained, coarse-textured setting without gley and with significant argillic (Bt) horizon development; (2) changes from a high Zr and Ti silt-dominated parent material to locally derived, coarse fluvial gravels lower in Zr and Ti; (3) a shift from dominantly conifer and sedge pollen in the paleosol to a modern oak/hickory hardwood assemblage; and (4) a shift in δ13C values of soil organic matter from −28‰ to −24‰ PDB, suggesting an ecosystem shift from cooler, C3-dominated flora to one that was mixed C3 and C4, but still predominantly composed of C3 plants. A root-restrictive placic horizon developed between the late Pleistocene silt paleosol and the overlying fluvial gravel because of the high permeability contrast between the two textures of soil materials. This layer formed a barrier that effectively isolated the Pleistocene paleosol from later Holocene pedogenic processes.  相似文献   

14.
The Provo shoreline of Lake Bonneville formed following the Bonneville flood, and, based on previous dating, was formed during a period of overflow from about 17.5 to 15.0 cal. ka. In many places the Provo shoreline consists of a pair of distinct shorelines, one ~3 m higher than the other. We present data from two cuts through double beaches to show that the upper beach is younger and represents sedimentation after a lake‐level rise. In addition, the lower beach deposits are internally stratified by beds that suggest three more lake‐level rises during its development. The Provo beach complex thus appears to have been built during rising lake levels, which can be explained by rises in the overflow threshold by sequential landslide deposition. Evaluation of beach altitudes demonstrates that the two beach crests throughout the Bonneville basin experienced equivalent rebound from removal of the lake load, and therefore they formed after the rebound associated with the Bonneville flood occurred in early Provo time. However, radiocarbon ages on gastropods collected within the beach deposits suggest both that the sequence of five beach deposits formed from c.18.1 to c. 17.0 cal. ka, and that the Bonneville flood occurred before 18 cal. ka. These ages are discordant with previous dates on shells within offshore sands, and raise questions about the validity of radiocarbon ages for shells in Lake Bonneville as well as about the age of the Bonneville flood and Provo shoreline. The timing for maximum Provo lake depths and its association with climate stages during deglaciation remain unresolved.  相似文献   

15.
A newly identified tephra in stratified deposits in southwestern Utah, dated 14,000 14C yr B.P., may aid in correlating late Pleistocene deposits across parts of the southern Great Basin and west-central Colorado Plateau. Geochemical analyses of the ash suggest the tephra originated from Mono Craters, California, and most probably correlates with Wilson Creek ash #3. Because the ash is 2 mm thick 550 km from its source, the event may have been larger than others correlated to Mono Craters eruptions.  相似文献   

16.
Shoreline geomorphology, shoreline stratigraphy, and radiocarbon dates of organic material incorporated in constructional beach ridges record large lakes during the late Pleistocene and late Holocene in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. During the late Holocene, a transgression began at or after 3595 ± 35 14C yr B.P. and continued, perhaps in pulses, through 2635 ± 40 14C yr B.P., resulting in a lake as high as 1199 m. During the latest Pleistocene and overlapping with the earliest part of the Younger Dryas interval, a lake stood at approximately 1212 m at 10,820 ± 35 14C yr B.P. and a geomorphically and stratigraphically distinct suite of constructional shorelines associated with this lake can be traced to 1230 m. These two lake highstands correspond to periods of elevated regional wetness in the western Basin and Range that are not clearly represented in existing northern Sierra Nevada climate proxy records.  相似文献   

17.
Peat mires retain a sensitive record of water‐table (base‐level) fluctuations throughout their accumulation. On this basis, coals provide one of the best opportunities to interpret high‐resolution base‐level change in ancient non‐marine deposits. The petrographic composition of 275 samples collected from 11 localities along a 100 km south‐west to north‐east transect across the regionally extensive (>37 000 km2) Pennsylvanian (Upper Carboniferous) Fire Clay coal of the Central Appalachian Basin, USA was analysed to determine its internal stratigraphy. The coal is positioned within the late lowstand/early transgressive systems tract of a fourth‐order depositional sequence. The results of the petrographic analyses reveal a cyclicity in the composition of the Fire Clay coal, which defines six units that are correlated over more than 100 km. Each coal cycle is characterized by a gradual upward transition from vitrinite‐dominated to inertinite‐dominated coal, which represents a ‘drying‐up’ succession. Increased concentrations of resistant peat components at the top of the drying‐up successions indicate reduced peat accumulation rates associated with slowing rate of water‐table rise, and may represent a residue of peat remaining from a phase of exposure and erosion resulting from a falling water table. These drying‐up successions are bound by surfaces that display an abrupt coal facies shift from inertinite‐rich to vitrinite‐rich coal, representing a rapid water‐table rise. Each cycle represents markedly different mire conditions with different aerial distributions, which supports the notion of temporal disconnection between each unit of coal, and suggests that considerable time may be ‘locked‐up’ in unit bounding exposure surfaces. Recognition that the rate of peat accumulation in a mire may vary considerably through time, has important implications for studies which assume that peat and coal successions provide continuous and time‐invariant records of base‐level fluctuations or palaeoecological change.  相似文献   

18.
为了解宁夏清水河盆地晚更新世以来的沉积、构造演化规律,采用钻探、粒度分析、光释光测年等技术,对盆地中部发现的2期晚更新世湖相地层进行了沉积学、年代学研究。结果表明,下部湖相地层萨拉乌苏组的形成时代为76~63 ka,上部湖相地层水洞沟组形成时代为25~11 ka,二者之间存在明显的侵蚀面。根据沉积证据和粒度分析结果,将萨拉乌苏组自下而上划分为4个沉积阶段,构成了一个完整的湖进-湖退序列,代表了一期温暖湿润的气候环境;而水洞沟组为干冷环境下形成的浅湖。构造、环境对比分析表明,清水河盆地2期古大湖的形成、消亡指示该地区晚更新世经历了拉张-挤压-拉张的构造转换。两次拉张作用是萨拉乌苏湖和水洞沟湖形成的主要因素,古大湖发育的间断期存在的强烈构造隆升事件是导致萨拉乌苏湖消亡的根本原因,末次冰期MIS4和MIS2晚期的异常寒冷气候也是古湖衰退的原因之一。清水河盆地2期古湖的演化规律,为研究青藏高原周缘晚更新世古大湖形成与演化、古气候变迁及青藏高原的隆升提供了重要的证据。  相似文献   

19.
北美五大湖区的安大略湖北岸Don Valley Brickyard、Scarborough Bluffs、Bowmanville Bluffs剖面共同构成了北美东北部最长也是最厚的陆地第四纪沉积记录, 较完整地记录了晚更新世劳伦泰德冰盖(the Laurentide Ice Sheet)的演化. 晚更新世劳伦泰德冰盖演化的重建有赖于这些经典剖面中重要沉积地层单元的准确年代学控制. 传统的地层年代学主要是依靠少量14C年代, 将主要的混杂堆积单元(diamicton)解释为气候变冷环境下的冰川扩张, 并与指示全球冰量变化的深海氧同位素曲线一一比对建立起来的. 这样建立起来的年代学存在很大的不确定性. 20世纪80-90年代的少量热释光年代也不相吻合, 最近的13个长石红外释光定年则只集中于Bowmanville Bluffs的一个分层, 并未建立整个剖面的地层年代学, 使这些经典沉积剖面的年代学一直没有得到系统的建立. 应用石英光释光SAR-SGC法测试了Bowmanville Bluffs剖面Glaciofluvial Sand单元的2个冰水沉积样品, 年代结果分别为(41.6±3.8) ka、(48.1±4.4) ka, 分析表明这一年代结果偏老, 石英颗粒可能晒褪不完全. 由于大测片无法识别晒褪不完全的颗粒, 因此, 测试更多的剖面序列的光释光年代并尝试采用粗颗粒小测片或单颗粒技术解决样品颗粒晒褪不完全的问题将是必要的.  相似文献   

20.
Thrombolites are a common component of carbonate buildups throughout the Phanerozoic. Although they are usually described as microbialites with an internally clotted texture, a wide range of thrombolite textures have been observed and attributed to diverse processes, leading to difficulty interpreting thrombolites as a group. Interpreting thrombolitic textures in terms of ancient ecosystems requires understanding of diverse processes, specifically those due to microbial growth and metazoan activity. Many of these processes are reflected in thrombolites in the Cambrian Carrara, Bonanza King, Highland Peak and Nopah formations, Great Basin, California, USA; they comprise eight thrombolite classes based on variable arrangements and combinations of depositional and diagenetic components. Four thrombolite classes (hemispherical microdigitate, bushy, coalescent columnar and massive fenestrated) contain distinct mesoscale microbial growth structures that can be distinguished from surrounding detrital sediments and diagenetic features. By contrast, mottled thrombolites have mesostructures that dominantly reflect post‐depositional processes, including bioturbation. Mottled thrombolites are not bioturbated stromatolites, but rather formed from disruption of an originally clotted growth structure. Three thrombolite classes (arborescent digitate, amoeboid and massive) contain more cryptic textures. All eight of the thrombolite classes in this study formed in similar Cambrian depositional environments (marine passive margin). Overall, this suite of thrombolites demonstrates that thrombolites are diverse, in both internal fabrics and origin, and that clotted and patchy microbialite fabrics form from a range of processes. The diversity of textures and their origins demonstrate that thrombolites should not be used to interpret a particular ecological, evolutionary or environmental shift without first identifying the microbial growth structure and distinguishing it from other depositional, post‐depositional and diagenetic components. Furthermore, thrombolites are fundamentally different from stromatolites and dendrolites in which the laminae and dendroids reflect a primary growth structure, because clotted textures in thrombolites do not always reflect a primary microbial growth structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号