首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Long-slit spectra of the molecular outflow Herbig–Haro (HH) 46/47 have been taken in the J and K near-infrared bands. The observed H2 line emission confirms the existence of a bright and extended redshifted counter-jet outflow south-west of HH 46. In contrast with the optical appearance of this object, we show that this outflow seems to be composed of two different emission regions characterized by distinct heliocentric velocities. This implies an acceleration of the counter-jet.
The observed [Fe  ii ] emission suggests an average extinction of 7–9 visual magnitudes for the region associated with the counter-jet.
Through position–velocity diagrams, we show the existence of different morphologies for the H2 and [Fe  ii ] emission regions in the northern part of the HH 46/47 outflow. We have detected for the first time high-velocity (−250 km s−1) [Fe  ii ] emission in the region bridging HH 46 to HH 47A. The two strong peaks detected can be identified with the optical positions B8 and HH 47B.
The H2 excitation diagrams for the counter-jet shock suggest an excitation temperature for the gas of T ex≈2600 K . The lack of emission from the higher energy H2 lines, such as the 4–3 S(3) transition, suggests a thermal excitation scenario for the origin of the observed emission. Comparison of the H2 line ratios with various shock models yielded useful constraints about the geometry and type of these shocks. Planar shocks can be ruled out whereas curved or bow shocks (both J- and C-type) can be parametrized to fit our data.  相似文献   

2.
Near-infrared images in H2 line emission and submillimetre maps in CO J  = 3–2 emission illustrate the remarkable association between a molecular bow shock and the redshifted molecular outflow lobe in W75N. The flow lobe fits perfectly into the wake of the bow, as one would expect if the lobe represented swept-up gas. Indeed, these observations strongly support the 'bow shock' entrainment scenario for molecular outflows driven by young stars.   The characteristics of the bow shock and CO outflow lobe are compared with those of numerical simulations of jet-driven flows. These models successfully reproduce the bulge and limb-brightening in the CO outflow, although the model H2 bow exhibits more structure extending back along the flow axis. We also find that the size of the flow, the high mass fraction in the flow at low outflow velocities (low γ values) and the high CO/H2 luminosity ratio indicate that the system is evolved. We also predict a correlation, in evolved systems, between outflow age and the CO/H2 luminosity ratio.  相似文献   

3.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   

4.
To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1–0 S(1) (2.122-μm) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 μm. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula whereby the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from η  Car, are now being overrun by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around η Car.  相似文献   

5.
Compact regions of enhanced HCO+ and NH3 emission have been detected close to a number of Herbig–Haro objects. An interpretation of these detections is the following: a transient clump within the molecular cloud has been irradiated by the shock that generates the Herbig–Haro object. The irradiation releases icy mantles from the grains within the transient clump and initiates a photochemistry. On the basis of this picture, we have developed an extensive chemical model which predicts that a wide range of species, other than NH3 and HCO+, should also be detectable. These include CH3OH, H2S, C3H4, H2CO, SO, SO2, H2CS and NS. The chemical effects should last ∼  104 yr  .  相似文献   

6.
We report the discovery of high-velocity dense gas from a bipolar outflow source near NGC 2068 in the L1630 giant molecular cloud. CO and HCO+ J =3→2 line wings have a bipolar distribution in the vicinity of LBS 17-H with the flow orientated roughly east–west and perpendicular to the elongation of the submillimetre dust continuum emission. The flow is compact (total extent ∼0.2 pc) and contains of the order of 0.1 M of swept-up gas. The high-velocity HCO+ emission is distributed over a somewhat smaller area <0.1 pc in extent.
A map of C18O J =2→1 emission traces the LBS 17 core and follows the ambient HCO+ emission reasonably well, with the exception of the direction towards LBS 17-H where there is a significant anticorrelation between the C18O and HCO+. A comparison of beam-matched C18O and dust-derived H2 column densities suggests that CO is depleted by up to a factor of ∼50 at this position if the temperature is as low as 9 K, although the difference is substantially reduced if the temperature is as high as 20 K. Chemical models of collapsing clouds can account for this discrepancy in terms of different rates of depletion on to dust grains for CO and HCO+.
LBS 17-H has a previously known water maser coincident with it but there are no known near-infrared, IRAS or radio continuum sources associated with this object, leading to the conclusion that it is probably very young. A greybody fit to the continuum data gives a luminosity of only 1.7 L and a submillimetre-to-bolometric luminosity ratio of 0.1, comfortably satisfying the criteria for classification as a class 0 protostar candidate.  相似文献   

7.
The results of a survey searching for outflows using near-infrared imaging are presented. Targets were chosen from a compiled list of massive young stellar objects associated with methanol masers in linear distributions. Presently, it is a widely held belief that these methanol masers are found in (and delineate) circumstellar accretion discs around massive stars. If this scenario is correct, one way to test the disc hypothesis is to search for outflows perpendicular to the methanol maser distributions. The main objective of the survey was to obtain wide-field near-infrared images of the sites of linearly distributed methanol masers using a narrow-band 2.12-μm filter. This filter is centred on the  H2 v = 1–0 S(1)  line; a shock diagnostic that has been shown to successfully trace CO outflows from young stellar objects. 28 sources in total were imaged of which 18 sources display H2 emission. Of these, only two sources showed emission found to be dominantly perpendicular to the methanol maser distribution. Surprisingly, the H2 emission in these fields is not distributed randomly, but instead the majority of sources are found to have H2 emission dominantly parallel to their distribution of methanol masers. These results seriously question the hypothesis that methanol masers exist in circumstellar discs. The possibility that linearly distributed methanol masers are instead directly associated with outflows is discussed.  相似文献   

8.
We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR)  G359.1–0.5  and the non-thermal radio filament known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock, while the H2 filament is located at the boundary between the pre-shock and post-shock regions.  相似文献   

9.
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H  ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation.  相似文献   

10.
Maps are presented of 3 P 13 P 0[C  i ] and J =2→1 C18O line emission from the interstellar molecular cloud G35.2−0.74N. The maps are interpreted with reference to a previous model for the structure of the cloud in which opposing jets from a central object, embedded in a rotating interstellar disc, precess and drive a bipolar molecular outflow. The C18O emission traces the rotating interstellar disc, but the [C  i ] emission shows several features. An unresolved component is observed which probably results from dissociation of CO in the centre of the disc by UV radiation from the central source. Background [C  i ] emission is also observed which shares the rotation of the disc on larger scales. The C  i /CO ratio in these components is typically a few per cent. High-velocity [C  i ] emission, where C  i /CO is high (>0.1–0.4), is observed between the CO molecular outflow and the cavity exacavated by the jet. This material has probably been accelerated by the jet but dissociated by far-UV radiation propagating through the cavity. The C  i /CO ratio falls as the shocked outflow later sweeps up CO.  相似文献   

11.
We present a comprehensive near-infrared study of two molecular bow shocks in two protostellar outflows, HH 99 in R Coronae Australis and VLA 1623A (HH 313) in Rho Ophiuchi. New, high-resolution, narrow-band images reveal the well-defined bow shock morphologies of both sources. These are compared with two-dimensional MHD modelling of molecular bows from which we infer flow inclination angles, shock speeds and the magnetic field in the pre-shock gas in each system. With combined echelle spectroscopy and low-resolution K -band spectra we further examine the kinematics and excitation of each source. Bow shock models are used to interpret excitation (CDR) diagrams and estimate the extinction and, in the case of VLA 1623, the ortho–para ratio associated with the observed H2 population. For the first time, morphology, excitation and kinematics are fitted with a single bow shock model.
Specifically, we find that HH 99 is best fitted by a C-type bow shock model (although a J-type cap is probably responsible for the [Fe  ii ] emission). The bow is flowing away from the observer (at an angle to the line of sight of ∼45°) at a speed of roughly 100 km s−1. VLA 1623A is interpreted in terms of a C-type bow moving towards the observer (at an angle to the line of sight of ∼75°) at a speed of ∼80 km s−1. The magnetic field associated with HH 99 is thought to be orientated parallel to the flow axis; in VLA 1623A the field is probably oblique to the flow axis, since this source is clearly asymmetric in our H2 images.  相似文献   

12.
We have computed optical absorption-line profiles of CH+ and CH, as predicted by a model of a C-type shock propagating in a diffuse interstellar cloud. Both these species are produced in the shock wave in the reaction sequence that is initiated by C+(H2, H)CH+. Whilst CH+ flows at the ion speed, CH, which forms in the dissociative recombination reaction CH+3(e, H2)CH, flows at a speed which is intermediate between those of the ions and the neutrals. The predicted velocity shift between the CH+ and CH line profiles is found to be no more than approximately 2 km s−1, which is smaller than has previously been assumed. We also investigate OH and HCO+, finding that the correlation between their column densities, recently observed in the diffuse interstellar medium, can be reproduced by the model.  相似文献   

13.
We present NH3(1,1) and (2,2) observations of MBM 12, the closest known molecular cloud (65-pc distance), aimed at finding evidence for on-going star formation processes. No local temperature (with a T rot upper limit of 12 K) or linewidth enhancement is found, which suggests that the area of the cloud that we have mapped (15-arcmin size) is not currently forming stars. Therefore this nearby 'starless' molecular gas region is an ideal laboratory to study the physical conditions preceding new star formation.
A radio continuum source has been found in Very Large Array archive data, close to but outside the NH3 emission. This source is likely to be a background object.  相似文献   

14.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

15.
We present VLA observations of the ( J , K )=(1, 1), (2, 2), (3, 3) and (4, 4) inversion transitions of NH3 toward the HW 2 object in Cepheus A, with 1-arcsec angular resolution. Emission is detected in the main hyperfine line of the first three transitions. The NH3(2, 2) emission shows a non-uniform 'ring' structure, which is more extended (3 arcsec) and intense than the emission seen in the (1, 1) and (3, 3) lines. A rotational temperature of ∼ 30–50 K and a lower limit to the mass of ∼ 1 ( X NH3/10−8)−1 M are derived for the ring structure. The spatio-kinematical distribution of the NH3 emission does not seem to be consistent with a simple circumstellar disc around the HW 2 thermal biconical radio jet. We suggest that it represents the remnant of the parental core from which both the inner 300-au (0.4 arcsec) disc, traced by the water maser spots previously found in the region, and the central object have formed. The complex velocity field of this core is probably produced from bound motions (similar to those of the inner disc) and from interaction with outflowing material.  相似文献   

16.
We demonstrate that a wide range of molecular hydrogen excitation can be observed in protostellar outflows at wavelengths in excess of 5 μm. Cold H2 in DR 21 is detected through the pure rotational transitions in the ground vibrational level (0–0). Hot H2 is detected in pure rotational transitions within higher vibrational levels (1–1, 1–2, etc.). Although this emission is relatively weak, we have detected two 1–1 lines in the DR 21 outflow with the ISO SWS instrument. We thus investigate molecular excitation over energy levels corresponding to the temperature range 1015–15 722 K, without the uncertainty introduced by differential extinction when employing near-infrared data.
This gas is thermally excited. We uncover a rather low H2 excitation in the DR 21 West Peak. The line emission cannot be produced from single C-shocks or J-shocks; a range of shock strengths is required. This suggests that bow shocks and/or bow-generated supersonic turbulence is responsible. We are able to distinguish this shock-excited gas from the fluoresced gas detected in the K band, providing support for the dual-excitation model of Fernandes, Brand & Burton.  相似文献   

17.
We study the prospects for observing H2 emission during the assembly of primordial molecular cloud kernels. The primordial molecular cloud cores, which resemble those at the present epoch, can emerge around  1+ z ∼20  according to recent numerical simulations. The kernels form inside the cores, and the first stars will appear inside the kernels. A kernel typically contracts to form one of the first generation stars with an accretion rate that is as large as ∼0.01 M yr−1. This occurs owing to the primordial abundances, which result in a kernel temperature of order 1000 K, and the collapsing kernel emits H2 line radiation at a rate ∼1035 erg s−1. Predominantly   J =5-3   ( v =0)  rotational emission of H2 is expected. At redshift  1+ z ∼20  , the expected flux is ∼0.01 μJy for a single kernel. While an individual object is not observable by any facilities available in the near future, the expected assembly of primordial star clusters on subgalactic scales can result in fluxes at the sub-mJy level. This is marginally observable with ASTRO-F and ALMA. We also examine the rotational   J =2-0   ( v =0)  and vibrational   δv =1  emission lines. The former may possibly be detectable with ALMA.  相似文献   

18.
The Cepheus A star-forming region has been investigated through a multiline H2S and SO2 survey at millimetre wavelengths. Large-scale maps and high-resolution line profiles reveal the occurrence of several outflows. Cep A East is associated with multiple mass-loss processes: in particular, we detect a 0.6-pc jet-like structure which shows for the first time that the Cep A East young stellar objects are driving a collimated outflow moving towards the south.
The observed outflows show different clumps associated with definitely different H2S/SO2 integrated emission ratios, indicating that the gas chemistry in Cepheus A has been altered by the passage of shocks. H2S appears to be more abundant than SO2 in high-velocity clumps, in agreement with chemical models. However, we also find quite small H2S linewidths, suggestive of regions where the evaporated H2S molecules had enough time to slow down but not to freeze out on to dust grains. Finally, comparison between the line profiles indicates that the excitation conditions increase with the velocity, as expected for a propagation of collimated bow shocks.  相似文献   

19.
We present theoretically established values of the CO-to-H2 and C-to-H2 conversion factors that may be used to estimate the gas masses of external galaxies. We consider four distinct galaxy types, represented by M51, NGC 6946, M82 and SMC N27. The physical parameters that best represent the conditions within the molecular clouds in each of the galaxy types are estimated using a χ2 analysis of several observed atomic fine structure and CO rotational lines. This analysis is explored over a wide range of density, radiation field, extinction and other relevant parameters. Using these estimated physical conditions in methods that we have previously established, CO-to-H2 conversion factors are then computed for CO transitions up to J = 9 → 8. For the conventional CO(1–0) transition, the computed conversion factor varies significantly below and above the canonical value for the Milky Way in the four galaxy types considered. Since atomic carbon emission is now frequently used as a probe of external galaxies, we also present, for the first time, the C-to-H2 conversion factor for this emission in the four galaxy types considered.  相似文献   

20.
We present an in-depth analysis of molecular excitation in 11 H2-bright planetary and protoplanetary nebulae (PN and PPN). From newly acquired K -band observations, we extract a number of spectra at positions across each source. H2 line intensities are plotted on 'column density ratio' diagrams so that we may examine the excitation in and across each region. To achieve this, we combine the shock models of Smith, Khanzadyan & Davis with the photodissociation region (PDR) models of Black & van Dishoeck to yield a shock-plus-fluorescence fit to each data set.
Although the combined shock + fluorescence model is needed to explain the low- and high-energy H2 lines in most of the sources observed (fluorescence accounts for much of the emission from the higher-energy H2 lines), the relative importance of shocks over fluorescence does seem to change with evolutionary status. We find that shock excitation may well be the dominant excitation mechanism in the least evolved PPN (CRL 2688 – in both the bipolar lobes and in the equatorial plane) and in the most evolved PN considered (NGC 7048). Fluorescence, on the other hand, becomes more important at intermediate evolutionary stages (i.e. in 'young' PN), particularly in the inner core regions and along the inner edges of the expanding post-asymptotic giant branch (AGB) envelope. Since H2 line emission seems to be produced in almost all stages of post-AGB evolution, H2 excitation may prove to be a useful probe of the evolutionary status of PPN and PN alike. Moreover, shocks may play an important role in the molecular gas excitation in (P)PN, in addition to the low- and/or high-density fluorescence usually attributed to the excitation in these sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号