共查询到20条相似文献,搜索用时 0 毫秒
1.
D. R. Flower J. Le Bourlot G. Pineau des Forêts S. Cabrit 《Monthly notices of the Royal Astronomical Society》2003,341(1):70-80
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2 . The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram. 相似文献
2.
A. S. B. Schultz M. G. Burton P. W. J. L. Brand 《Monthly notices of the Royal Astronomical Society》2005,358(4):1195-1214
We present a model for empirically reproducing line profiles of molecular hydrogen emission in bow shocks. The model takes into account bow velocity, dissociation limit, a cooling function, viewing angle, bow shape and a limited form of extinction. Our results show that both geometrical factors and shock physics can significantly affect the profile morphology. In a companion paper we will apply this model to Fabry–Perot observations of bow shocks in the Orion BN–KL outflow. 相似文献
3.
4.
C. Codella R. Bachiller M. Benedettini P. Caselli 《Monthly notices of the Royal Astronomical Society》2003,341(2):707-716
The Cepheus A star-forming region has been investigated through a multiline H2 S and SO2 survey at millimetre wavelengths. Large-scale maps and high-resolution line profiles reveal the occurrence of several outflows. Cep A East is associated with multiple mass-loss processes: in particular, we detect a 0.6-pc jet-like structure which shows for the first time that the Cep A East young stellar objects are driving a collimated outflow moving towards the south.
The observed outflows show different clumps associated with definitely different H2 S/SO2 integrated emission ratios, indicating that the gas chemistry in Cepheus A has been altered by the passage of shocks. H2 S appears to be more abundant than SO2 in high-velocity clumps, in agreement with chemical models. However, we also find quite small H2 S linewidths, suggestive of regions where the evaporated H2 S molecules had enough time to slow down but not to freeze out on to dust grains. Finally, comparison between the line profiles indicates that the excitation conditions increase with the velocity, as expected for a propagation of collimated bow shocks. 相似文献
The observed outflows show different clumps associated with definitely different H
5.
J. M. C. Rawlings S. D. Taylor D. A. Williams 《Monthly notices of the Royal Astronomical Society》2000,313(3):461-468
Anomalous molecular line profile shapes are the strongest indicators of the presence of the infall of gas that is associated with star formation. Such profiles are seen for well-known tracers, such as HCO+ , CS and H2 CO. In certain cases, optically thick emission lines with appropriate excitation criteria may possess the asymmetric double-peaked profiles that are characteristic of infall. However, recent interpretations of the HCO+ infall profile observed towards the protostellar infall candidate B335 have revealed a significant discrepancy between the inferred overall column density of the molecule and that which is predicted by standard dark cloud chemical modelling.
This paper presents a model for the source of the HCO+ emission excess. Observations have shown that, in low-mass star-forming regions, the collapse process is invariably accompanied by the presence of collimated outflows; we therefore propose the presence of an interface region around the outflow in which the chemistry is enriched by the action of jets. This hypothesis suggests that the line profiles of HCO+ , as well as other molecular species, may require a more complex interpretation than can be provided by simple, chemically quiescent, spherically symmetric infall models.
The enhancement of HCO+ depends primarily on the presence of a shock-generated radiation field in the interface. Plausible estimates of the radiation intensity imply molecular abundances that are consistent with those observed. Further, high-resolution observations of an infall-outflow source show HCO+ emission morphology that is consistent with that predicted by this model. 相似文献
This paper presents a model for the source of the HCO
The enhancement of HCO
6.
Christopher J. Davis Michael D. Smith Jochen Eislöffel John K. Davies 《Monthly notices of the Royal Astronomical Society》1999,308(2):539-550
We present a comprehensive near-infrared study of two molecular bow shocks in two protostellar outflows, HH 99 in R Coronae Australis and VLA 1623A (HH 313) in Rho Ophiuchi. New, high-resolution, narrow-band images reveal the well-defined bow shock morphologies of both sources. These are compared with two-dimensional MHD modelling of molecular bows from which we infer flow inclination angles, shock speeds and the magnetic field in the pre-shock gas in each system. With combined echelle spectroscopy and low-resolution K -band spectra we further examine the kinematics and excitation of each source. Bow shock models are used to interpret excitation (CDR) diagrams and estimate the extinction and, in the case of VLA 1623, the ortho–para ratio associated with the observed H2 population. For the first time, morphology, excitation and kinematics are fitted with a single bow shock model.
Specifically, we find that HH 99 is best fitted by a C-type bow shock model (although a J-type cap is probably responsible for the [Fe ii ] emission). The bow is flowing away from the observer (at an angle to the line of sight of ∼45°) at a speed of roughly 100 km s−1 . VLA 1623A is interpreted in terms of a C-type bow moving towards the observer (at an angle to the line of sight of ∼75°) at a speed of ∼80 km s−1 . The magnetic field associated with HH 99 is thought to be orientated parallel to the flow axis; in VLA 1623A the field is probably oblique to the flow axis, since this source is clearly asymmetric in our H2 images. 相似文献
Specifically, we find that HH 99 is best fitted by a C-type bow shock model (although a J-type cap is probably responsible for the [Fe ii ] emission). The bow is flowing away from the observer (at an angle to the line of sight of ∼45°) at a speed of roughly 100 km s
7.
In an attempt to identify the molecular shocks associated with the entrainment of ambient gas by collimated stellar winds from young stars, we have imaged a number of known molecular outflows in H2 v=1-0 S(1) and wide-band K. In each flow, the observed H2 features are closely associated with peaks in the CO outflow maps. We therefore suggest that the H2 results from shocks associated with the acceleration or entrainment of ambient, molecular gas. This molecular material may be accelerated either in a bow shock at the head of the flow, or along the length of the flow through a turbulent mixing layer. 相似文献
8.
K. J. Brooks † M. G. Burton J. M. Rathborne M. C. B. Ashley J. W. V. Storey 《Monthly notices of the Royal Astronomical Society》2000,319(1):95-102
To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1–0 S(1) (2.122-μm) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 μm. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula whereby the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from η Car, are now being overrun by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around η Car. 相似文献
9.
Flower 《Monthly notices of the Royal Astronomical Society》1998,297(1):334-336
We present rate coefficients for rotational transitions induced in collisions between H2 molecules. Rotational levels J ≤ 8 and kinetic temperatures T ≤ 1000 K are considered. The interaction potential computed by Schwenke has been used, together with the quantal coupled channels method of calculating the cross-sections. Comparison is made with the more recent of previous results. 相似文献
10.
T. P. M. Goumans C. Richard A. Catlow Wendy A. Brown 《Monthly notices of the Royal Astronomical Society》2009,393(4):1403-1407
The formation of H2 on a pristine olivine surface [forsterite (010)] is investigated computationally. Calculations show that the forsterite surface catalyzes H2 formation by providing chemisorption sites for H atoms. The chemisorption route allows for stepwise release of the reaction exothermicity and stronger coupling to the surface, which increases the efficiency of energy dissipation. This suggests that H2 formed on a pristine olivine surface should be much less rovibrationally excited than H2 formed on a graphite surface. Gas-phase H atoms impinging on the surface will first physisorb relatively strongly ( E phys = 1240 K) . The H atom can then migrate via desorption and re-adsorption, with a barrier equal to the adsorption energy. The barrier for a physisorbed H atom to become chemisorbed is equal to the physisorption energy, therefore there is almost no gas-phase barrier to chemisorption. An impinging gas-phase H atom can easily chemisorb ( E chem = 12 200 K) , creating a defect where a silicate O atom is protonated and a single electron resides on the surface above the adjacent magnesium ion. This defect directs any subsequent impinging H atoms to chemisorb strongly (39 800 K) on the surface electron site. The two adjacent chemisorbed atoms can subsequently recombine to form H2 via a barrier (5610 K) that is lower than the chemisorption energy of the second H atom. Alternatively, the adsorbed surface species can react with another incoming H atom to yield H2 and regenerate the surface electron site. This double chemisorption 'relay mechanism' catalyzes H2 formation on the olivine surface and is expected to attenuate the rovibrational excitation of H2 thus formed. 相似文献
11.
Michael D. Smith Alexander Rosen 《Monthly notices of the Royal Astronomical Society》2005,357(2):579-589
We present hydrodynamic simulations of molecular outflows driven by jets with a long period of precession, motivated by observations of arc-like features and S-symmetry in outflows associated with young stars. We simulate images of not only H2 vibrational and CO rotational emission lines, but also of atomic emission. The density cross-section displays a jaw-like cavity, independent of precession rate. In molecular hydrogen, however, we find ordered chains of bow shocks and meandering streamers which contrast with the chaotic structure produced by jets in rapid precession. A feature particularly dominant in atomic emission is a stagnant point in the flow that remains near the inlet and alters shape and brightness as the jet skims by. Under the present conditions, slow jet precession yields a relatively high fraction of mass accelerated to high speeds, as also attested to in simulated CO line profiles. Many outflow structures, characterized by HH 222 (continuous ribbon), HH 240 (asymmetric chains of bow shocks) and RNO 43N (protruding cavities), are probably related to the slow-precession model. 相似文献
12.
13.
14.
J. M. Torrelles J. F. Gómez G. Garay L. F. Rodríguez L. F. Miranda S. Curiel P. T. P. Ho 《Monthly notices of the Royal Astronomical Society》1999,307(1):58-66
We present VLA observations of the ( J , K )=(1, 1), (2, 2), (3, 3) and (4, 4) inversion transitions of NH3 toward the HW 2 object in Cepheus A, with 1-arcsec angular resolution. Emission is detected in the main hyperfine line of the first three transitions. The NH3 (2, 2) emission shows a non-uniform 'ring' structure, which is more extended (3 arcsec) and intense than the emission seen in the (1, 1) and (3, 3) lines. A rotational temperature of ∼ 30–50 K and a lower limit to the mass of ∼ 1 ( X NH3 /10−8 )−1 M⊙ are derived for the ring structure. The spatio-kinematical distribution of the NH3 emission does not seem to be consistent with a simple circumstellar disc around the HW 2 thermal biconical radio jet. We suggest that it represents the remnant of the parental core from which both the inner 300-au (0.4 arcsec) disc, traced by the water maser spots previously found in the region, and the central object have formed. The complex velocity field of this core is probably produced from bound motions (similar to those of the inner disc) and from interaction with outflowing material. 相似文献
15.
16.
C. J. Davis P. Scholz P. Lucas M. D. Smith A. Adamson 《Monthly notices of the Royal Astronomical Society》2008,387(3):954-968
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO J = 3–2 maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of α∼ 1.4 ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region. 相似文献
17.
The formation of molecular hydrogen (H2 ) in the interstellar medium takes place on the surfaces of dust grains. Hydrogen molecules play a role in gas-phase reactions that produce other molecules, some of which serve as coolants during gravitational collapse and star formation. Thus, the evaluation of the production rate of hydrogen molecules and its dependence on the physical conditions in the cloud are of great importance. Interstellar dust grains exhibit a broad size distribution in which the small grains capture most of the surface area. Recent studies have shown that the production efficiency strongly depends on the grain composition and temperature as well as on its size. In this paper, we present a formula that provides the total production rate of H2 per unit volume in the cloud, taking into account the grain composition and temperature as well as the grain size distribution. The formula agrees very well with the master equation results. It shows that for a physically relevant range of grain temperatures, the production rate of H2 is significantly enhanced due to their broad size distribution. 相似文献
18.
19.
20.
We study the prospects for observing H2 emission during the assembly of primordial molecular cloud kernels. The primordial molecular cloud cores, which resemble those at the present epoch, can emerge around 1+ z ∼20 according to recent numerical simulations. The kernels form inside the cores, and the first stars will appear inside the kernels. A kernel typically contracts to form one of the first generation stars with an accretion rate that is as large as ∼0.01 M⊙ yr−1 . This occurs owing to the primordial abundances, which result in a kernel temperature of order 1000 K, and the collapsing kernel emits H2 line radiation at a rate ∼1035 erg s−1 . Predominantly J =5-3 ( v =0) rotational emission of H2 is expected. At redshift 1+ z ∼20 , the expected flux is ∼0.01 μJy for a single kernel. While an individual object is not observable by any facilities available in the near future, the expected assembly of primordial star clusters on subgalactic scales can result in fluxes at the sub-mJy level. This is marginally observable with ASTRO-F and ALMA. We also examine the rotational J =2-0 ( v =0) and vibrational δv =1 emission lines. The former may possibly be detectable with ALMA. 相似文献