首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Waste disposal sites are mostly located in lowland areas close to residential areas inducing a long-term risk of potential environmental contamination due to flooding. During recent flood events, these areas were reportedly exposed to inundations. This paper aims to develop a qualitative approach to assess flood risk associated with flood-prone waste disposals at the basis of Austrian case studies. Risk is investigated as a function of the probability of an event and the consequences of that event. The presented assessment approach is characterized as qualitative as consequences are expressed in risk categories but not in expected (monetary) losses. The probability of inundation, the hydrodynamic impacts on considered waste disposal sites and the expected consequences to the environment (potential emissions of hazardous substances) were linked. Derived risk categories from “minor risk” to “serious risk” were used to express flood risk to environmental goods like groundwater bodies, nature reserves and recreation areas. A screening of 1,064 waste disposals yielded roughly 30% of sites located within or close to flood risk zones. Three representative case study areas were selected and investigated in detail by applying 2D hydrodynamic models to calculate flow depths and shear stress and by developing emission scenarios. The hydrodynamic modelling covered three hydrologic scenarios with statistical recurrence intervals of 30, 100 and 300 years. Derived leaching scenarios ranged from minor emissions up to total erosion of the waste disposal site. Based on four parameters representing flood characteristics, the susceptibility to erosion (flow velocity and shear stress) and the estimated leaching behaviour, a flood risk evaluation matrix (FREM) was elaborated. The study outlines that in case of flooding the hazardous emissions could lead to partly tremendous impacts on environmental goods. Identified uncertainties associated with considered processes were considerably high. However, the developed qualitative approach provides a decision support aid to identify waste disposals with imminent risk for humans and the environment.  相似文献   

2.
Risk, including flood risk, can be defined as ??the combination of the probability of an event and its consequences??. Assessing and managing the risk from flooding should explicitly include the estimation of impacts to people. Extensive research is currently ongoing looking at both quantitative and qualitative approaches for assessing flood impacts on people. Although there is some literature available on such approaches, examples of methodological and routinely applications of these methodologies as part of flood risk assessments are rare. This paper focuses on quantitative approaches for estimating impacts of flooding to people, notably on methods for assessing fatality numbers associated with flooding. Three methods for assessing losses of life are discussed in detail. The methods discussed here constitute the forefront of research in Canada, UK and The Netherlands. These methods provide an assessment of the physical consequences of flooding on people and can be used to introduce the impacts to people as quantitative metric for the assessment of flood risk. In this paper, the three methodologies are discussed and applied in a UK case study reproducing the 1953 East Coast flood event. This study aims to provide a comprehensive comparison on both the reliability and the applicability of the methods. We analyse possible added values on using of these methods in systematic analyses, aiming to provide guidelines for applying these methods for flood fatality risk assessment.  相似文献   

3.
The proposed flood mitigation measures in the Slovak Republic are subject of environmental impact assessment (EIA) process before its approval. The paper elaborates and demonstrates the application of the risk analysis method for evaluating alternatives, which is core in EIA. Risk analysis is an appropriate tool to determine the level of the risk of the proposed flood mitigation measures and through which it is possible to choose the alternative with the lowest level of risk for the environment. The article presents the application of the developed methodology based on universal matrix of risk analysis in ?iba village that is in existing flood risk. It analyses and discusses the results of the impact assessment from EIA practice in the Slovakia. The aim of the work is to improve existing qualitative and quantitative methods for assessing the impacts of proposed activities on the environment. Developed methodology stimulates creative approaches in searching of the best alternative to proposed activities (constructions) that are environmentally friendly. Innovation in this paper is presented by an implementation of universal matrix of risk analysis for flood mitigation measures (developed by the authors) for the purposes of EIA process.  相似文献   

4.
This study investigated contributory factors to flood hazard around Scotland. There is a need to develop preliminary assessments of areas potentially vulnerable to flooding for compliance with the European Union Directive on the Assessment and Management of Flood Risks (2007/60/EC). Historical accounts of coastal flood events in Scotland, notably in a storm in January 2005, had shown that estimates of risk based on still water levels required further information to identify sites at which waves and surges could combine. Additionally, it was important to add the effect of future sea-level rise and other drivers from published sources. Analysis of multiple years’ tidal data at seven sites, including estuaries, compared recorded water levels at high-return periods to those derived from a spatially interpolated numerical model contained within a publicly available flood risk map. For gauges with the longest records, increases were seen over time that reflected rises in mean sea level. Exposure to wave energy was computed from prevailing wind strength and direction at 36 stations, related to wave fetch and incident wind direction. Although the highest wave exposure was at open coast locations exposed to the long Atlantic fetch, GIS analysis of coastal rasters identified other areas in or close to estuaries that also had high exposure. Projected sea-level change, when added to the surge and wave analyses, gives a spatially extensive structured variable flood risk assessment for future coastal flood hazard to complement the public flood risk map. Such tools can help fulfil the requirements of the EC Directive and may be a useful approach in other regions with high spatial variability in coastal flood risk related to exposure to waves and wind.  相似文献   

5.

The assessment of vulnerability provides valuable knowledge in the risk assessment steps of a risk governance process. Given the multiscale, multilevel, and multisectorial aspects of flood risk, the diversified entities that directly and indirectly intervene in risk management require specific outputs from the assessment studies. Urban areas in estuarine margins are particularly exposed and vulnerable to flooding. Such interface conditions are found in the Old City Centre of the Seixal, located in the Tagus estuary, Portugal. Here, two distinct methodologies were applied for the assessment of territorial vulnerability. A regional, lower-scale, methodology explores the application of the statistical procedure based on the SoVI® at the statistical block level. A second, local and higher-scale, methodology is based in data collected through field matrices at the building and statistical sub-block level. Comparison of results revealed that the lower-scale assessment provides information on the vulnerability drivers at the regional and municipal level. Nevertheless, only at a higher-scale, it is possible to characterize and differentiate the smaller geographical units of analysis that compose the Old City Centre of Seixal. The lower-scale vulnerability assessment allows a strategic response, based on adaptation measures such as spatial planning, institutional capacity building and public awareness. The local level assessment provides more accurate knowledge to support local emergency planning and the allocation of operational and material resources at the urban level. Nevertheless, rather than antagonistic, both models can be considered as complementary, having in mind the requirements of an holistic flood risk governance model.

  相似文献   

6.
Coastal inundation and damage exposure estimation: a case study for Jakarta   总被引:2,自引:2,他引:0  
Coastal flooding poses serious threats to coastal areas, and the vulnerability of coastal communities and economic sectors to flooding will increase in the coming decades due to environmental and socioeconomic changes. It is increasingly recognised that estimates of the vulnerability of cities are essential for planning adaptation measures. Jakarta is a case in point, since parts of the city are subjected to regular flooding on a near-monthly basis. In order to assess the current and future coastal flood hazard, we set up a GIS-based flood model of northern Jakarta to simulate inundated area and value of exposed assets. Under current conditions, estimated damage exposure to extreme coastal flood events with return periods of 100 and 1,000 years is high (€4.0 and €5.2 billion, respectively). Under the scenario for 2100, damage exposure associated with these events increases by a factor 4–5, with little difference between low/high sea-level rise scenarios. This increase is mainly due to rapid land subsidence and excludes socioeconomic developments. We also develop a detemporalised inundation scenario for assessing impacts associated with any coastal flood scenario. This allows for the identification of critical points above which large increases in damage exposure can be expected and also for the assessment of adaptation options against hypothetical user-defined levels of change, rather than being bound to a discrete set of a priori scenarios. The study highlights the need for urgent attention to the land subsidence problem; a continuation of the current rate would result in catastrophic increases in damage exposure.  相似文献   

7.

In the last decades, floods have increased in frequency all over the world due to diverse phenomena such as climate change, extended urbanization, land use, etc. Their social, cultural, economic and environmental impacts have also grown significantly, highlighting the need for the development of further studies and improved methods to manage and mitigate flood risk, mainly in urban areas. Historic sites need particular attention in this field, not only because the high and irreplaceable cultural value of these areas, but also taking into account that the constructive typologies that they host are particularly vulnerable to natural hazards. In consequence of that, the analysis of the phenomena, the evaluation of their consequences and the adoption of adequate mitigation and preparedness measures are presently a fundamental societal challenge. Having this in mind, the present paper aims at proposing an innovative methodology focused on the assessment of flood vulnerability in historic sites through the evaluation of a set of exposure and sensitivity indicators. From the analysis of these indicators, it is possible to obtain a Flood Vulnerability Index capable of measuring the spread of flood vulnerability over an extended area. The historic centre of Guimarães, in Portugal, declared by UNESCO as a World Heritage Site in 2001, is used here as a pilot case study to apply and discusses the preliminary version of the approach. Although some improvements are still needed, this approach can be already used to provides preliminary vulnerability scenarios and to point the way to the definition of more efficient and customized strategies for managing and mitigating flood risk in historic sites. Moreover, with further improvements and calibrations resorting to larger and more diverse data, it will be possible to reduce some of the uncertainties currently involved in the assessment process and to make its application wider and more robust.

  相似文献   

8.
The assessment of vulnerability provides valuable knowledge in the risk assessment steps of a risk governance process. Given the multiscale, multilevel, and multisectorial aspects of flood risk, the diversified entities that directly and indirectly intervene in risk management require specific outputs from the assessment studies. Urban areas in estuarine margins are particularly exposed and vulnerable to flooding. Such interface conditions are found in the Old City Centre of the Seixal, located in the Tagus estuary, Portugal. Here, two distinct methodologies were applied for the assessment of territorial vulnerability. A regional, lower-scale, methodology explores the application of the statistical procedure based on the SoVI® at the statistical block level. A second, local and higher-scale, methodology is based in data collected through field matrices at the building and statistical sub-block level. Comparison of results revealed that the lower-scale assessment provides information on the vulnerability drivers at the regional and municipal level. Nevertheless, only at a higher-scale, it is possible to characterize and differentiate the smaller geographical units of analysis that compose the Old City Centre of Seixal. The lower-scale vulnerability assessment allows a strategic response, based on adaptation measures such as spatial planning, institutional capacity building and public awareness. The local level assessment provides more accurate knowledge to support local emergency planning and the allocation of operational and material resources at the urban level. Nevertheless, rather than antagonistic, both models can be considered as complementary, having in mind the requirements of an holistic flood risk governance model.  相似文献   

9.
The disposal is the final step of any hazardous waste management plan. An inappropriate landfill site may have negative environmental, economical, and ecological impacts. Therefore, landfills should be sited carefully by taking into account various rules, regulations, factors, and constraints. In this study, candidate sites for hazardous landfills in the northeastern Khorasan Razavi province are determined using the integration of geographic information system and landfill susceptibility zonation methods. For this, the inappropriate areas were first removed from the model, and the suitability of remaining regions were evaluated using 15 different criteria in two steps. With this done, nine candidate sites were selected as the most suitable locations. Finally, the selected landfill sites were proposed based on environmental impact assessment (Leopold matrix) and economical studies. This study shows that Maasumabad, Kheirabad, Mayamey, and Yonsi are the best locations for the constitution of landfill in Khorasan Razavi province, respectively.  相似文献   

10.
Economic damage assessment for flood risk estimation is established in many countries, but attentions have been focused on macro- or meso-scale approaches and less on micro-scale approaches. Whilst the macro- or meso-scale approaches of flood damage assessment are suitable for regional- or national-oriented studies, micro-scale approaches are more suitable for cost–benefit analysis of engineered protection measures. Furthermore, there remains lack of systematic and automated approaches to estimate economic flood damage for multiple flood scenarios for the purpose of flood risk assessment. Studies on flood risk have also been driven by the assumption of stationary characteristic of flood hazard, hence the stationary-oriented vulnerability assessment. This study proposes a novel approach to assess vulnerability and flood risk and accounts for adaptability of the approach to nonstationary conditions of flood hazard. The approach is innovative in which an automated concurrent estimation of economic flood damage for a range of flood events on the basis of a micro-scale flood risk assessment is made possible. It accounts for the heterogeneous distribution of residential buildings of a community exposed to flood hazard. The feasibility of the methodology was tested using real historical flow records and spatial information of Teddington, London. Vulnerability curves and residual risk associated with a number of alternative extents of property-level protection adoptions are estimated by the application of the proposed methodology. It is found that the methodology has the capacity to provide valuable information on vulnerability and flood risk that can be integrated in a practical decision-making process for a reliable cost–benefit analysis of flood risk reduction options.  相似文献   

11.
Preliminary flood risk assessment: the case of Athens   总被引:3,自引:2,他引:1  
Flood mapping, especially in urban areas, is a demanding task requiring substantial (and usually unavailable) data. However, with the recent introduction of the EU Floods Directive (2007/60/EC), the need for reliable, but cost effective, risk mapping at the regional scale is rising in the policy agenda. Methods are therefore required to allow for efficiently undertaking what the Directive terms “preliminary flood risk assessment,” in other words a screening of areas that could potentially be at risk of flooding and that consequently merit more detailed attention and analysis. Such methods cannot rely on modeling, as this would require more data and effort that is reasonable for this high-level, screening phase. This is especially true in urban areas, where modeling requires knowledge of the detailed urban terrain, the drainage networks, and their interactions. A GIS-based multicriteria flood risk assessment methodology was therefore developed and applied for the mapping of flood risk in urban areas. This approach quantifies the spatial distribution of flood risk and is able to deal with uncertainties in criteria values and to examine their influence on the overall flood risk assessment. It can further assess the spatially variable reliability of the resulting maps on the basis of the choice of method used to develop the maps. The approach is applied to the Greater Athens area and validated for its central and most urban part. A GIS database of economic, social, and environmental criteria contributing to flood risk was created. Three different multicriteria decision rules (Analytical Hierarchy Process, Weighted Linear Combination and Ordered Weighting Averaging) were applied, to produce the overall flood risk map of the area. To implement this methodology, the IDRISI Andes GIS software was customized and used. It is concluded that the results of the analysis are a reasonable representation of actual flood risk, on the basis of their comparison with historical flood events.  相似文献   

12.
Makkah city, Saudi Arabia, is periodically exposed to flash floods that result in major human and economical damages. That is due to several factors including its rugged topography and geological structures. Hence, precise assessment of floods becomes a more vital demand in development planning. A GIS-based methodology has been developed for quantifying and spatially mapping the flood characteristics. The core of this new approach is integrating several topographic, metrological, geological, and land use data sets in a geographic information system (GIS) environment that utilizes the curve number method of flood modelling for ungauged arid catchments. Based on the estimated flood volume of sub-basins, a hazard factor has been developed to quantify the expected hazard level for each road. Applying this proposed approach reveals that 21?% of the road network in Makkah city is subjected to low flood hazards, 29?% is facing medium hazards, and 50?% of roads are exposed to harsh flood impacts. The developed approach may be considered a digital precise method that can be easily re-run, in other situations or regions, to estimate flood hazards on roads.  相似文献   

13.
This paper assesses the socioeconomic consequences of extreme coastal flooding events. Wealth and income impacts associated with different social groups in coastal communities in Israel are estimated. A range of coastal flood hazard zones based on different scenarios are identified. These are superimposed on a composite social vulnerability index to highlight the spatial variation in the socioeconomic structure of those areas exposed to flooding. Economic vulnerability is captured by the exposure of wealth and income. For the former, we correlate the distribution of housing stock at risk with the socioeconomic characteristics of threatened populations. We also estimate the value of residential assets exposed under the different scenarios. For the latter, we calculate the observed change in income distribution of the population under threat of inundation. We interpret the change in income distribution as an indicator of recovery potential.  相似文献   

14.
This article explores the impacts of floods on the economy, environment, and society and tries to clarify the rural community’s coping mechanism to flood disasters in Central Viet Nam. It focuses on the social aspects of flood risk perception that shapes the responses to floods. The research findings revealed that flooding is an essential element for a coastal population, whose livelihood depend on productive functions of cyclical floods. The findings also revealed that floods, causing losses and damages, often inhibited economic development. The surveyed communities appeared to have evolved coping mechanisms to reduce the negative impacts of the floods, yet these coping mechanisms are under pressure due to environmental degradation. Integrated flood risk management is considered as a suitable paradigm for coping with flood disasters.
Phong TranEmail:
  相似文献   

15.
Estimating Injury and Loss of Life in Floods: A Deterministic Framework   总被引:3,自引:3,他引:3  
This paper presents an outline methodology and an operational framework for assessing and mapping the risk of death or serious harm to people from flooding, covering death and physical injuries as a direct and immediate consequence of deep and/or fast flowing floodwaters (usually by drowning), and deaths and physical injuries associated with the flood event (but occurring in the immediate aftermath). The main factors that affect death or injury to people during floods include flow velocity, flow depth, and the degree to which people are exposed to the flood. The exposure potential is related to such factors as the “suddenness” of flooding (and amount of flood warning), the extent of the floodplain, people’s location on the floodplain, and the character of their accommodation. In addition, risks to people are affected by social factors including their vulnerability and behaviour. A methodology is described for estimating the likely annual number of deaths/injuries. This is based on defining zones of different flood hazard and, for each zone, estimating the total number of people located there, the proportion that are likely to be exposed to a flood, and the proportion of those exposed who are likely to be injured or killed during a flood event. The results for each zone are combined to give an overall risk for each flood cell and/or community. The objective of the research reported here is to develop a method which could be applied using a map-based approach in which flood risks to people are calculated and displayed spatially for selected areas or communities. The information needed for each part of the process is described in the paper, and the further research to provide the required information is identified.  相似文献   

16.
The 4th IPCC report highlights the increased vulnerability of the coastal areas from floods due to sea-level rise (SLR). The existing coastal flood control structures in Bangladesh are not adequate to adapt these changes and new measures are urgently necessary. It is important to determine the impacts of SLR on flooding to analyse the performance of the existing structures and corresponding impact to plan for suitable adaptation and mitigation measures to reduce the impacts of floods on coastal zone. The study aims to develop a comprehensive understanding of the possible effects of SLR on floods in the coastal zone of Bangladesh. A hydrodynamic model, which is a combination of surface and river parts, was utilized for flood simulation. The tool was applied under a range of future scenarios, and results indicate both spatial variability of risk and changes in flood characteristics between now and under SLR. Estimated impact on population, infrastructure and transportation is also exposed. These types of impact estimation would be of value to flood plain management authorities to minimize the socio-economic impact.  相似文献   

17.
Flood risk assessment is usually performed by application of sophisticated mathematical models of river flow. However, there are cases when it is required to assess the risk in the lack of data conditions or a limited time available. In such cases, it is advisable to use some simplifications, which provide reliable results faster. This study proposes a hybrid approach to the flood risk assessment combining quantitative and qualitative indicators. The article describes various methods to assess the flood risk, such as likelihood of flooding, magnitude of the flood, average annual damage, maximum damage and expectation of damage. The authors examined special cases of calculation of the mathematical expectation of harm and zoning in the corresponding indicators. This approach is designed for the conditions of the Russian Federation, but it can be adapted for other regions. It is based on the use of two types of risk maps. The first type of maps is intended to define the mathematical expectation of damage zones for reference building with possibility of risk calculation for other buildings using multiple factors. The second type of maps is designed for the purposes of land use regulation for floodplains based on a priori statistical estimates of flood risk.  相似文献   

18.
Sustainable water management is one of humanity’s most important challenges—today and in the future. Germany does not face a significant water shortage problem, but it has three main challenges: protection of water quality, ensuring public water supply and public wastewater disposal, and protecting the public and infrastructure from floods. Capacity development is a key issue to overcome the challenges of water resources in any country including Germany. Engineers, technicians, and mechanics need to upgrade their knowledge on a regular basis to deal with the complex management and rapid technological developments. In order to create efficient training schemes, the Vocational Training Working Group of Global Water Partnership (GWP), part of the GWP Capacity Development Task Force, has worked on the definition of fundamental job profiles for the Water and Sanitation Sector (WASS). To cover all technical functions of the industrial water cycle, it was necessary to identify around thirty occupations. Then, a competence-based training approach was adopted. Additionally, an assessment approach was also developed based on comparing the level of competence of the workers to a standard level of competence for each job. The RWTH Aachen University with its partners have developed another game-based approach (SeCom2.0) based on serious gaming technology to enable water professionals dealing with flood risk management to be trained on different flood situations in a virtual environment. SeCom2.0 has three main components that are connected by a database layer. In addition to the serious games component, there is a collaboration component and a learning management system. For nearly 100 members from the flood competence centre (HochwasserKompetenzCentrum) in Cologne, Germany gave input to simulate the real flooding scenarios, and the learners will have to deal with a flood scenario by protecting the city in a given time and using a given resources and tools. This work concluded that both competence-based and game-based approaches could be significantly improved by blending both approaches. This will improve the process of training; for example, the competence-based approach can be enriched by using game-based simulation by introducing the trainees to a simulation of different technologies in water utilities. This can save resources and money and enrich the training. More importantly is modifying the game-based approach using the approach of competence-based to focus on specific competencies and to make use of the competence standards in its assessment component. The first section of this introduces and categorizes water challenges in Germany. In the second and third section, the two approaches are introduced in details. The competence-based approach is introduced to the WASS while the games-based to the flood risk management. Finally, a conclusion and recommendations are illustrated.  相似文献   

19.
Coastal regions are the areas most threatened by natural hazards, with floods being the most frequent and significant threat in terms of their induced impacts, and therefore, any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with various processes acting at different scales: coastal storms, flash floods, and sea level rise (SLR). In order to address the problem as a whole, this study presents a methodology to undertake a preliminary integrated risk assessment that determines the magnitude of the different flood processes (flash flood, marine storm, SLR) and their associated consequences, taking into account their temporal and spatial scales. The risk is quantified using specific indicators to assess the magnitude of the hazard (for each component) and the consequences in a common scale. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the areas at greatest risk and the risk components that have the greatest impact. This methodology is applied on the Maresme coast (NW Mediterranean, Spain), which can be considered representative of developed areas of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area of relatively low overall risk, although some hot spots have been identified with high-risk values, with flash flooding being the principal risk process.  相似文献   

20.
The relation between the magnitude of a flood event and the resulting environmental impacts remains unclear. This study examines the impact of the flood of record on heavy metal deposition on the Tar River floodplain in eastern North Carolina, USA. Samples of sediment deposited on the floodplain following Hurricane Floyd were collected from 85 sites along the lower Tar River basin and analyzed for heavy metal concentration. The Hurricane Floyd event is the flood of record for the Tar River basin. Despite the magnitude of the flood, little suspended sediment was deposited on the floodplain. In almost all cases the deposition was less than 0.2 cm. There was variability in heavy metal content from site to site, but the overall concentrations were lower than might be expected for a flood of the magnitude of Floyd. To aid in comparison of contamination levels, the heavy metal concentrations were normalized to two environmental standards; the EPA preliminary remediation goals for residential soil and the general background concentrations of stream sediments throughout the Tar River basin. Most samples were highly enriched in heavy metals relative to the background concentration of stream sediments. However, samples were generally not contaminated relative to EPA PRG regulations. Arsenic, which was significantly elevated in nearly all samples, was the only exception. This contradiction makes it clear that the standard to which contaminants are compared must be considered carefully. The overall low concentration of heavy metals was likely the result of smaller flooding from Hurricane Dennis, 10 days prior to Hurricane Floyd, moving most of the stored sediment out of the basin prior to wide-spread overtopping of the banks. The implication is that event sequencing is as important as flood magnitude when examining environmental impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号