共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims at investigating the influence of moisture conditions on interface shear behavior of element-grouted anchor specimens embedded in clayey soils. The tests involved comparatively short embedment lengths and a device that was specially designed to facilitate moisture conditioning. Rapidly loaded pullout tests as well as pullout tests under sustained (creep) loading were conducted to characterize both the short-term and long-term ultimate shear strength of anchor–soil interfaces. Both values of the interface shear strength were found to decrease exponentially with increasing moisture content values, although their ratio was found to show a linearly decreasing trend with increasing moisture content. The interface shear creep response under pullout conditions was characterized by a rheological hybrid model that could be calibrated using experimental measurements obtained under increasing stress levels. The accuracy of the hybrid model was examined by evaluating the stress-dependent prediction model as well as its governing parameters. This investigation uncovers the coupled impact of soil moisture condition and external stress state on the time-dependent performance of grouted anchors embedded in clayey soils by correlating the interface shear strength with soil moisture content and associating the creep model with stress levels applied to the grout–soil interface. 相似文献
2.
It is shown that time compression curve obtained from one-dimensional consolidation curve in the laboratory may include six
phases. These are initial compression, first primary compression, transition from first primary compression to second primary
compression, second primary compression, and transition from second primary compression to creep and lastly creep. This paper
attempts to identify the quantitative beginnings and characteristics of these phases. A mathematical characteristic of all
the soils that follow primary consolidation as per Terzaghi’s one dimensional consolidation theory is derived. It is known
as the constant of primary consolidation. It is used to study the beginning of secondary consolidation and its effects on
primary consolidation. Another characteristic of soils for creep and total absence of primary compression is derived. Methods
are suggested for the determination of coefficients of Primary and Secondary consolidations and the compression index. 相似文献
3.
采用改进的、可施加负压的三轴仪开展了真空预压、堆载预压以及真空-堆载联合预压作用下软土的固结蠕变试验,描述了加载率、应力比和时间等对软土蠕变特性的影响,分析了轴向应变(率)、体积应变(率)及偏应变(率)与应力比和时间之间的关系。结果表明:轴向应变率和体积应变率与时间的对数关系并非线性,但经过若干天以后可近似认为是线性关系;在不同应力比n下,体应变与时间的关系可用双曲线方程来表示;偏应变、偏应变率与时间的关系符合双曲线方程,通过温州软黏土样的蠕变试验结果验证了其有效性。 相似文献
4.
Most previous studies and applications of electrochemical stabilization of soils through electroosmosis have been made on clayey soils. The object of this investigation was to find out if relatively small amounts of clay (1.5%–3.5%, by weight) present in a sandy soil would be enough for stabilization and strengthening to be possible. The results indicate increases of cohesion of the order of 100–200 lb./sq.ft. X-ray analyses of treated soils indicate that sheet structures of clays are reduced and silicates destroyed upon treatment by electroosmosis. Newly-formed minerals also cement the soil. These neoformations include gibbsite, limonite, calcite, hydrohematite, hydrogoethite (hydrolepidocrocite), hisingerite, allophane, allophanoid, gypsum, hematite, magnetite, nontronite, trona and natron (Na 2 CO 3, 10H 2O). The process seems to be irreversible. 相似文献
5.
In this work, elasto-plastic coupled equations are formulated in order to describe the time-dependent deformation of saturated cohesive soils (two-phase state). Formulation of these equations is based on the principle of virtual work and the theory of mixtures for inelastic porous media. The theory of mixtures for a linear elastic porous skeleton was first developed by Biot (Theory of elasticity and consolidation for a porous anisotropic solid, Journal of Applied Physics, 1955, 26, 188–185). An extension of Biot's theory into a nonlinear inelastic media was performed by Prevost (Mechanics of continuous porous media, International Journal of Engineering Science, 1980, 18, 787–800). The saturated soil is considered as a mixture of two deformable media, the solid grains and the water. Each medium is regarded as a continuum and follows its own motion. The flow of pore-water through the voids is assumed to follow Darcy's law. The coupled equations are developed for large deformations with finite strains in an updated Lagrangian reference frame. The coupled behavior of the two-phase materials (soil-water state) is implemented in a finite element program. A modified Cam-clay model is adopted and implemented in the finite element program in order to describe the plastic behavior of clayey soils. Penetration of a piezocone penetrometer in soil is numerically simulated and implemented into a finite element program. The piezocone penetrometer is assumed to be infinitely stiff. The continuous penetration of the cone is simulated by applying an incremental vertical movement of the cone tip boundary. Results of the finite element numerical simulation are compared with experimental measurements conducted at Louisiana State University using the calibration chamber. The numerical simulation is carried out for two cases. In the first case, the interface friction between the soil and the piezocone penetrometer is neglected. In the second case, interface friction is assumed between the soil and the piezocone. The results of the numerical simulations are compared with experimental laboratory measurements. 相似文献
6.
This paper describes the main findings of a laboratory study on the mechanical behaviour of cemented geologically normally
consolidated lacustrine clayey soils from two sites, Bacinetto (BA) and Avezzano (AZ), in the Fucino basin (Italy). One-dimensional
and triaxial compression tests were carried out in order to investigate the effects of the presence and of the progressive
degradation of the interparticle cementation bonds. The two tested soils showed quite different physical and mechanical properties,
the more apparent ones being plasticity and yield stress values. The experimental results allowed the gross yield curves and the critical state conditions to be identified for both soils (BA clay and AZ silt). A number of typical
features generally exhibited by cemented soils were clearly apparent: yield stresses greater than the in situ stress states,
both soils being geologically normally consolidated; high values of compressibility index after yielding, which gradually
reduce with increasingly applied stresses; strength reductions associated with a globally contractive behaviour. A convenient
normalisation of the experimental results, in which the critical state conditions are assumed as a reference state, allowed
the effects of cementation bonds and of their progressive degradation to be highlighted. In particular, BA samples were found
to be characterised by different structures related to different degrees of cementation. Furthermore, despite the larger values of the yielding stresses exhibited by AZ silt, stronger effects of
cementation are apparent in BA soil. Experimental results seem to indicate that at high values of the applied stress and strain
paths, when bonds are largely damaged, the structures of the natural and parent reconstituted BA soil continue to be different. 相似文献
7.
强度特性是非饱和土力学中基础性的研究内容。目前对广吸力范围内非饱和黏土强度的预测研究相对较少。本文首先基于文献中粉质黏土、Madrid黏土和南阳弱膨胀土的非饱和强度特性进行了对比与分析。将不同类型非饱和黏土的强度特性大致分为3种类型:(1)在某一吸力范围试样出现强度峰值,并随着吸力值的进一步增大而降低;(2)达到某一吸力值后其强度几乎维持不变,不受吸力值的影响;(3)其强度随着吸力值的增大而增大。此外,基于现有考虑吸附水膜和毛细水作用的方法拟合广吸力范围内不同类型土的土水特征曲线,并将土水特征曲线分离成吸附土水特征曲线和毛细土水特征曲线。在非饱和土的抗剪强度公式中,认为吸力引起的非饱和强度增强部分主要由毛细水作用决定的,故将非饱和抗剪强度公式中吸力引起非饱和增强项的有效应力系数(即饱和度或有效饱和度)用毛细水对应的饱和度替代。最后,利用修正后的非饱和抗剪强度公式对3种较广吸力范围内非饱和土的强度进行了预测。预测结果表明过渡区段内的强度预测效果较好,但高吸力段非饱和强度的预测还有待进一步研究。 相似文献
8.
This paper seeks to investigate the liquefaction of clayey soils, a phenomenon that has been the trigger for many natural disasters in the last few decades, including landslides. Research was conducted on artificial clay-sand mixtures and natural clayey soils collected from the sliding surfaces of earthquake-induced landslides. The undrained response of normally consolidated clayey soils to cyclic loading was studied by means of a ring-shear apparatus. For the artificial clay-sand mixtures, it was found that the presence of a small amount of bentonite (≤ 7%) would cause rapid liquefaction, while a further increase in bentonite content (≥ 11%) produced the opposite effect of raising soil resistance to liquefaction by a significant degree. It was demonstrated that the bentonite-sand mixture was considerably more resistant to liquefaction than the kaolin-, and illite-mixtures, given the same clay content. The test results of plastic soils revealed the significant influence of plasticity on the liquefaction resistance of soil. The microfabric of clayey soil was investigated by means of a scanning electron microscope. The analysis showed that the liquefaction potential of soil was strongly related to certain particle arrangements. For example, soil vulnerable to liquefaction had an open microfabric in which clay aggregations generally gathered at the sand particle contact points, forming low-strength “clay bridges” that were destroyed easily during cyclic loading. On the other hand, the microfabric of soil that was resistant to liquefaction appeared to be more compact, with the clay producing a matrix that prevented sand grains from liquefying. In the case of the natural soils, the obtained results indicated that their cyclic behavior was similarly influenced by factors such as clay content, clay mineralogy and plasticity. The relation between the liquefaction potential of natural soil and its microfabric was thus also established. On the basis of the obtained results, the authors posited an explanation on the mechanism of liquefaction for clayey soil. 相似文献
9.
Summary A programme of residual shear strength testing has been undertaken on a number of Hellenic soil types: Marls, Clays and Flysch. The residual strength was determined using the Bromhead ring shear aparatus. For the applied normal stress range the residual strength envelope was straight and the resultant residual friction angle values are correlated with the index properties, such as Atterberg limits and grain-size distribution. The influence of mineralogy on the residual friction angle is also considered. 相似文献
10.
Flow-like landslides in clayey soils represent serious threats for populations and infrastructures and have been the subject of numerous studies in the past decade. However, despite the rising need for landslide mitigation with growing urbanization, the transient mechanisms involved in the solid-fluid transition are still poorly understood. One way of characterizing the solid-fluid transition is to carry out rheometrical tests on clayey soil samples to assess the evolution of viscosity with the shear stress. In this study, we carried out geotechnical and rheometrical tests on clayey samples collected from six flow-like landslides in order to assess if these clayey soils exhibit similar characteristics when they fluidize (solid-fluid transition). The results show that (1) all tested soils except one exhibit a yield-stress fluid behavior that can be associated with a bifurcation in viscosity (described by the critical shear rate \( \dot{\gamma_c} \)) and in shear modulus G; (2) the larger the amplitude of the viscosity bifurcation, the larger the associated drop in G; and (3) the water content ( w) deviation from the Atterberg liquid limit ( LL) seem a key parameter controlling a common mechanical behavior of these soils at the solid-fluid transition. We propose exponential laws describing the evolution of the critical shear stress τ c, the critical shear rate \( \dot{\gamma_c} \), and the shear modulus G as a function of the deviation w-LL. 相似文献
11.
We study the creep properties of clastic soil in residual state. The intact samples are taken from a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China. Firstly, the patterns of the landslide movement are analysed based on recent monitoring data, which indicate that the soil within the shear zone is undergoing two deformation processes: a creep phase, characterised by different creep rates, and a dormant phase. We then study the creep behaviour of the soil samples through a series of ring shear creep tests under various shear stress conditions. The creep response depends strongly on the ratio of the shear stress to the residual strength, and the normal effective stress, whereas the creep rate decreases due to strength regain. The long-term strength of the clastic soil is close to the residual strength. Therefore, the residual strength obtained from conventional shear test, which is less time consuming than creep test, can be used in long-term stability analyses of creeping landslides. 相似文献
12.
对于使用水泥与上海黏性土进行混合加固的土体,其强度增长特性与水泥含量、加固土的初期pH值、养护时间有关。以上海4类黏土为研究对象,对加固土的强度增长特性进行了试验研究;探讨了加固土的养护时间、水泥含量、初期pH等与加固土强度的关系。试验结果表明,当上海黏土中水泥含量或者加固土的初期pH值大于某一临界值时,水泥加固土的强度将迅速增加,对于上海黏土,该临界pH值为11.7,对应的水泥含量为17%~20%。但当水泥含量达到一定值后,它对土体的pH值的影响开始变小,而且水泥土的强度趋于稳定的时间变长。 相似文献
13.
Soil creep is mostly manifested in slow-moving landslides. It is often the case for active slow-moving landslide with slip zone comprising clayey soil where creep would develop in the residual condition. If gravel is presented in clayey soil, this will have considerable impact on creep behavior of clayey soil. However, knowledge about creep behavior of the clayey soil containing gravel particles is scarce. This paper discusses creep behavior of natural clayey soil with gravel at residual state through a series of creep shear tests. Soil samples for this testing program were collected from the slip zones of two large slow-moving landslides in China. The collected soil samples consisted of clayey soil containing various amounts of gravel particles. The test results show that the soil specimens underwent two different creep patterns. An attenuating creep pattern was observed when the soil specimens were subjected to creep stress less than the residual strength, and a creep with increasing strain rate, or a nonattenuating creep pattern, with no evident secondary creep was noted when creep stress was intestinally increased to a level slightly greater than the residual strength. The creep patterns of clayey soil with gravel at the residual state observed in this study were noted to be very consistent with those of the gravel-free clayey soil reported in Bhat et al. (Int J Geomater 1(1):39–43, 2011, Nat Hazards 69(3):2161–2178, 2013) and Di Miao et al. (Eng Geol 162:53–66, 2013). This gives an indication that creep patterns of clayey soils with and without gravel at the residual state are essentially the same, or in other words, that the presence of gravel does not change the creep pattern of clayey soil. However, the test results in this study illustrate that the presence of gravel does have a notable effect on creep behavior of clayey soil. Specifically, the creep stress leading to creep failure of clayey soil and the minimum ratio of the creep stress to residual strength (RCSR) increased with gravel content, and the displacement until the tertiary creep was also larger in samples containing more gravel particles. It is postulated that creep behavior of clayey soil at the residual state in this study and its relationship with gravel content may be related to strength recovery and crushing of gravel-sized particles during creep. 相似文献
14.
Two sites from a humid tropical environment were studied with respect to soil water repellency caused by hydrocarbon contamination. Samples were analyzed for water repellency (molarity ethanol droplet method), total petroleum hydrocarbons, acute toxicity (Microtox) and field capacity. At both sites, water absorption times were logarithmically related to the molarity ethanol drop value (R > 0.95). In a sandy soil collected from an old separation battery which had been bioremediated, field capacity was strongly related to hydrocarbon concentration (R = 0.998); and at 10,000 mg/kg the calculated field capacity was only 75 % of the baseline. Water repellency was related to hydrocarbon concentration asymptotically and plant growth limiting values (severity > 3.0) were observed at low concentrations (2,400 mg/kg), even though toxicity was at, or below background levels. Bioremediated soil at this site had hydrocarbon concentrations only 1,300 ppm above background, but had extreme water repellency (severity = 4.6–4.7). Soil water repellency was also measured in a clayey, organic rich floodable soil, in a multiple pipeline right-of-way colonized by water tolerant pasture and cattails. Water repellency was associated with total petroleum hydrocarbon concentration (R = 0.962), but was not related to field capacity or toxicity. In this low-lying site, the water repellency observed in the laboratory is probably not representative of field conditions: samples taken at the end of the ten week dry season (and only four days before the first rains) showed ample moisture (> 80 % field capacity). 相似文献
15.
The paper presents an experimental and numerical study to investigate the behavior of desiccated clayey soils. The performed tests permit to evaluate the crack pattern as well as the tensile strength as a function of suction. A new model that relates the porosity evolution to the suction and to the tensile strength was developed and implemented in the finite element program CODE_BRIGHT. The proposed model captured the initiation and propagation of cracks in a thin layer of desiccated clay and predicted crack patterns in terms of the Minkowski densities (i.e. average crack length and crack intensity factor). The effect of the heterogeneity of the tested specimens, modeled by random clusters, was also quantified. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
Footing settlements depend not only on physical and mechanical properties of base soils, but also on applied load intensities and their distributions with depth, as well as on footing rigidity, shape and dimensions. An analytical expression relating rigid bearing plate and/or footing settlements to thicknesses of deformation (active) zones, which form below footing bottoms, has been previously offered by the author. The results of tests performed with 0.5, 1.0 and 4.0 m 2-area square footings, constructed on undisturbed clayey soils and containing data describing active zone development, were collected from literature and analyzed. This paper presents graphical relationships between square footing settlements, active zone thicknesses and footing dimensions, which are verified by published test results performed with experimental square footings, having areas different than the ones selected for statistical analyses. 相似文献
17.
This research paper concerns the frozen state properties of several silty soils encountered in the construction of a large LNG storage cavern near Carlstadt, New Jersey. The creep and compression strengths were correlated with both field and laboratory-measured mechanical properties. These cryogenic mechanical properties were related to ice lens structures, sizes and occurrences, and to heat flow and geological structure effects. Three distinct and separate types of ice lenses were identified. These cryogenic ground data pertain to the prediction of the engineering properties of frozen earth for large structures. Sample size effect problems were investigated, this in relationship to the number and size and orientations of the ice lenses present. 相似文献
18.
Clayey sand can be considered as a composite matrix of coarse and fine grains. The interaction between coarser and finer grain matrices affects the overall stress–strain behavior of these soils. Intergranular void ratio, es (which is the void ratio of the coarser grain matrix) can be utilized as an alternative parameter to express the compressive response of such soils. Oedometer tests conducted on reconstituted kaolinite–sand mixtures indicate that initial conditions, percentage of fines, and stress conditions influence the compression characteristics evidently. Tests showed that, up to a fraction of fines, which is named as transition fines content (FC t), compression behavior of the mixtures is mainly controlled by the sand grains. When concentration of fines exceeds FC t, kaolinite controls the compression. It was found that FC t varies between 19% and 34% depending on the above mentioned factors. This range of fines content is also consistent with various values reported in literature regarding the strength alteration. Performed direct shear tests revealed that there is also a close relationship between transition fines content and shear strength, which is harmonic with the oedometer test results. 相似文献
19.
General approximate analytical solutions are developed for one-dimensional consolidation with consideration of the threshold gradient under a time-dependent loading. A comparison is made between the present solution and some available numerical solutions for a particular case, and the results show that the approach employed in this article is reasonable. The influence of the threshold gradient and the loading period on consolidation behaviour is investigated, and the results show that the moving boundary of seepage moves downward gradually. The greater the threshold gradient is, the slower the boundary moves. The excess pore pressure will not be completely dissipated at the end of consolidation, and the larger the threshold gradient is, the greater the residual excess pore pressure is. The average degree of consolidation considering the threshold gradient defined by settlement is different from that defined by pore pressure. Moreover, the greater the threshold gradient is, the larger the average degree of consolidation in terms of strain, whereas the smaller the average degree of consolidation in terms of stress. It is also shown that the longer the loading period is, the longer the time moving boundary takes to reach the bottom of the layer, and the greater the average degree of consolidation is. 相似文献
20.
In order to investigate the effects of temperature, thickness of soil layer, wetting and drying cycles and soil types on geometrical structure of surface shrinkage cracks in clayey soils, special software Crack Image Analysis System (CIAS) for analyzing shrinkage crack patterns was developed. Eight groups of soil samples were prepared and subjected to drying to crack in laboratory. The number of crack segments and intersections, average crack length, width and aggregate area, crack intensity factor (CIF), and the corresponding probability density functions (PDF) of these parameters were determined by analyzing several crack patterns derived from different experimental conditions. The results show that the soil cracking behavior and the geometrical structure of crack patterns are significantly influenced by these considered factors. There is a tendency of crack length, width, aggregate area and their most probable value (MPV) related to the PDF increases with temperature increase. With thicker soil layers, the average crack length, width, aggregate area and CIF are increased, and the main distribution ranges of crack length, width and aggregate area are increased also. When the soil is subjected to multiple wetting–drying cycles, the soil surface generates more irregular and coarse cracks. The number of short and narrow crack segments increases significantly, and the CIF decreases with an increase in wetting–drying cycles. It is also observed that the extent of cracking is directly related to the soil fines fraction and its plasticity index ( IP). The greatest CIF and crack width are observed in the soils with the largest fines fraction and highest IP. In addition, the ratio of numbers of crack segments to intersections ranges from 1.5 to 2, and cracking mainly takes place in three stages: main-cracks initiation stage; sub-cracks initiation stage; terminal stable stage. 相似文献
|