首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
The cosmological constantΛis the simplest model for explaining the dark energy which supposedly drives the observed accelerated expansion rate of the Universe.Together with the concept of cold dark matter,it satisfactorily accommodates a wealth of observations related to cosmology.Due to its assumed constancy throughout the Universe,Λmight also affect the dynamics of the planets in the solar system,although with extremely small effects.However,modern high-precision ephemerides provide a promising tool for constraining it.Using the supplementary advances in the perihelia provided by current INPOP10a and EPM2011 ephemerides,we obtain a new upper limit onΛin the solar system when the Lense-Thirring effect due to the Sun’s angular momentum and the uncertainty of the Sun’s quadrupole moment are properly taken into account.These two factors were mostly absent in previous works dealing withΛ.We find that INPOP10a yields an upper limit ofΛ=(0.26±1.45)×10-43m-2and EPM2011 givesΛ=(-0.44±8.93)×10-43m-2.Such bounds are about 10 times less than previously estimated results.  相似文献   

3.
4.
5.
6.
7.
The first-year Wilkinson Microwave Anisotropy Probe data suggest a high optical depth for Thomson scattering of  0.17 ± 0.04  , implying that the Universe was reionized at an earlier epoch than previously expected. Such early reionization is likely to be caused by ultraviolet (UV) photons from first stars, but it appears that the observed high optical depth can be reconciled within the standard structure formation model only if star formation in the early Universe was extremely efficient. With normal star formation efficiencies, cosmological models with non-Gaussian density fluctuations may circumvent this conflict as high density peaks collapse at an earlier epoch than in models with Gaussian fluctuations. We study cosmic reionization in non-Gaussian models and explore to what extent, within available constraints, non-Gaussianities affect the reionization history. For mild non-Gaussian fluctuations at redshifts of 30 to 50, the increase in optical depth remains at a level of a few per cent and appears unlikely to aid significantly in explaining the measured high optical depth. On the other hand, within available observational constraints, increasing the non-Gaussian nature of density fluctuations can easily reproduce the optical depth and may remain viable in underlying models of non-Gaussianity with a scale-dependence.  相似文献   

8.
We predict the biasing and clustering properties of galaxy clusters that are expected to be observed in the catalogues produced by two forthcoming X-ray and Sunyaev–Zel'dovich effect surveys. We study a set of flat cosmological models where the primordial density probability distribution shows deviations from Gaussianity in agreement with current observational bounds form the background radiation. We consider both local and equilateral shapes for the primordial bispectrum in non-Gaussian models. The two catalogues investigated are those produced by the e ROSITA wide survey and from a survey based on South Pole Telescope observations. It turns out that both the bias and observed power spectrum of galaxy clusters are severely affected in non-Gaussian models with local shape of the primordial bispectrum, especially at large scales. On the other hand, models with equilateral shape of the primordial bispectrum show only a mild effect at all scales, that is difficult to be detected with clustering observations. Between the two catalogues, the one performing better is the e ROSITA one, since it contains only the largest masses that are more sensitive to primordial non-Gaussianity.  相似文献   

9.
Chemodynamical models view the evolution of galaxies in the context of an ISM that is influenced both by the stars that it has made and the effects of the gravitational potential of the host system. While these models include complicated interactions within galaxies, they also exhibit general features, such as regulated star formation rates, mixing between various gas phases in the interstellar medium, and the transport of metals over large distances. These predictions are the basis for initial observational tests of the models, where good qualitative agreement is found, and offer a foundation for future quantitative comparisons with chemodynamical models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The constraints on total neutrino mass and effective number of neutrino species based on CMB anisotropy power spectrum, Hubble constant, baryon acoustic oscillations and galaxy cluster mass function data are presented. It is shown that discrepancies between various cosmological data in Hubble constant and density fluctuation amplitude, measured in standard ΛCDM cosmological model, can be eliminated if more than standard effective number of neutrino species and non-zero total neutrino mass are considered. This extension of ΛCDM model appears to be ≈3σ significant when all cosmological data are used. The model with approximately one additional neutrino type, N eff ≈ 4, and with non-zero total neutrino mass, Σ ≈ 0.5 eV, provide the best fit to the data. In the model with only one massive neutrino the upper limits on neutrino mass are slightly relaxed. It is shown that these deviations from ΛCDM model appearmainly due to the usage of recent data on the observations of baryon acoustic oscillations. The larger than standard number of neutrino species is measured mainly due to the comparison of the BAO data with direct measurements of Hubble constant, which was already noticed earlier. As it is shown below, the data on galaxy cluster mass function in this case give the measurement of non-zero neutrino mass.  相似文献   

11.
12.
We present visible and near-infrared spectral measurements for the highly accessible spacecraft target 4660 Nereus and three additional near-Earth objects displaying diverse color characteristics. All near-infrared measurements were carried out during the first remote observing operations between the Observatoire de Paris at Meudon and Mauna Kea, Hawaii. From Meudon, we had fine pointing and guiding control of the NASA Infrared Telescope Facility 3.0-m telescope and the near-infrared spectrograph “SpeX” to measure asteroid spectra in the range 0.8-. The efficiency of the observation was virtually the same as if the observers had been on location. We combine our near-infrared results with complementary 0.4- spectral measurements. Nereus is found to be a rare Xe-type asteroid with a composition that may be analogous to very high albedo enstatite achondrite (aubrite) meteorites, leading to a diameter estimate of less than . 1685 Toro displays a classic S-type spectrum while a steeper visible wavelength slope and a less pronounced absorption feature for 1943 Anteros places it in the L-class. Also unusual is the apparent olivine-rich spectrum for 4142 Dersu-Uzala, which is classified as an A-type.  相似文献   

13.
14.
15.
We examine the status of various dark energy models in light of the recently observed SN 1997ff at   z ≈1.7  . The modified data still fit a pure cosmological constant Λ or a quintessence with an equation of state similar to that of Λ. The kinematical Λ models,  Λ∼ S -2  and  Λ∼ H 2  , also fit the data reasonably well and require less dark energy density (hence more matter energy density) than is required by the constant Λ model. However, the model  Λ∼ S -2  with low energy density becomes unphysical as it cannot accommodate higher redshift objects.
We also examine an alternative explanation of the data, namely the absorption by the intervening whisker-like dust, and find that the quasi-steady state (QSS) model and the Friedmann–Robertson–Walker (FRW) model  Ωm0=0.33  without any dark energy also fit the data reasonably well.
We notice that the addition of SN 1997ff to the old data has worsened the fit to most of the models, except a closed FRW model with a constant Λ and a closed quintessence model with   ω φ =-0.82  , and the models have started departing from each other as we go above   z =1  . However, to make a clear discrimination possible, a few more supernovae with   z >1  are required.
We have also calculated the age of the Universe in these models and find that, in the models with a constant Λ, the expansion age is uncomfortably close to the age of the globular clusters. Quintessence models show even lower age. The kinematical Λ models are, however, interesting in this connection (especially the model  Λ∼ H 2)  , as they give a remarkably large age of the Universe.  相似文献   

16.
Strong increasing of the width and the depth of the secondary minimum of the light curve of V444 Cyg Wolf-Rayet eclipsing binary discovered by Cherepashchuk and Khaliullin (1973, 1975) from simultaneous narrow band continuum observations (4244–7512 Å) have been confirmed by new quasi-simultaneous UJK observations. This increasing of the width and the depth of the secondary minimum implies strong increasing of the radius of the extended atmosphere of the WN5 star with wavelength, which cannot be explained be the theory of homogeneous WR wind. These data can be understood in the model of WR wind proposed by Cherepashchuk et al. (1984). New data, supporting the reliability of the light curve solution for V444 Cyg of Cherepashchuk (1975) are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号