首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The projection of the plasmapause magnetic-field lines to low altitudes, where the light-ion chemistry is dominated by O+, tends to occur near the minimum electron density in the main (midlatitude) electron density trough at night. With increasing altitude in the trough, where H+ emerges as the dominant ion on the low-latitude boundary, we have found cases where the plasmapause field lines are located on the sharp low-latitude side of the trough as expected if this topside ionosphere H+ distribution varies in step with the plasmapause gradient in the distant plasmasphere. These conclusions are based on near-equatorial crossings of the plasmapause (corresponding to the steep gradient in the dominant species H+) by the Explorer-45 satellite as determined from electric-field measurements by Maynard and Cauffman in the early 1970s and ISIS-2 ionospheric topside-sounder measurements. The former data have now been converted to digital form and made available at http://nssdcftp.gsfc.nasa.gov. The latter provide samples of nearly coincident observations of ionospheric main trough crossings near the same magnetic-field lines of the Explorer 45-determined equatorial plasmapause. The ISIS-2 vertical electron density profiles are used to infer where the F-region transitions from an O+ to a H+ dominated plasma through the main trough boundaries.  相似文献   

2.
Research results concerning the main ionospheric trough (MIT) in the afternoon sector are present. Data are used from the meridional chain of stations located in the East Asian region. The analysis of ionospheric storms with different intensities reveals that the depletion in the F2 layer ionization in the afternoon/evening sector can be observed in the subauroral latitudes in the storm recovery phase predominantly during equinoxes and is associated with the formation of the MIT equatorward wall. Model calculations of the evening trough show that its location coincides with the belt of westward drift in the geomagnetic latitudes 55–65° at 13–17 MLT. Hence the simulated results support the assumption that the narrow and deep trough in the afternoon sector is formed by the westward drift with high velocities (~700 m/s). the drift transports the low-density plasma from the night side. The eastward drift with high velocities (~1000–1200 m/s) transports the low-density plasma from the night to morning side forming a trough in the morning sector.  相似文献   

3.
Tomographic imaging provides a powerful technique for obtaining images of the spatial distribution of ionospheric electron density at polar latitudes. The method, which involves monitoring radio transmissions from the Navy Navigation Satellite System at a meridional chain of ground receivers, has particular potential for complementing temporal measurements by other observing techniques such as the EISCAT incoherent-scatter radar facility. Tomographic reconstructions are presented here from a two-week campaign in November 1995 that show large-scale structuring of the polar ionosphere. Measurements by the EISCAT radar confirm the authenticity of the technique and provide additional information of the plasma electron and ion temperatures. The dayside trough, persistently observed at high latitudes during a geomagnetically quiet period but migrating to lower latitudes with increasing activity, is discussed in relationship to the pattern of the polarcap convection.  相似文献   

4.
The purpose of this paper is to study the effect of the main ionospheric trough location on the form of oblique sounding ionograms on the Murmansk-St. Petersburg subauroral radio path. Using a mathematical model of the high-latitude ionosphere, we have calculated four different distributions of electron density along the radio path. One of the distributions has been obtained when the trough is absent, and the remaining three distributions contain troughs of approximately identical depth and width but located at different distances from the ends of the radio path. Using the program of two-dimensional ray tracing, we numerically synthesized oblique-incidence ionograms for each of the four obtained distributions of electron density. The calculations have shown that the location of the main ionospheric trough affects considerably the shape of oblique-incidence ionograms.  相似文献   

5.
The paper presents the results of studies of the resonance structures of the background electromagnetic noise spectrum obtained in a series of experiments in the autumn of 2012 in Karelia. The experiments are unique because the background noise was detected at stations spaced by a distance much less than the doubled effective waveguide height (about 50 km) in a region close to the main ionospheric trough, the structure and position of which were determined based on radiotomographic data. It is shown that the dimensions of the ionospheric local region, which affects both the generation of spectral resonance structures in particular and the propagation of electromagnetic waves in the considered range in general, depend significantly on the variation of ionospheric parameters in regions with strong horizontal inhomogeneity.  相似文献   

6.
The data of measurements of broadband wave radiation in the main ionospheric trough in the subauroral zone of the topside ionosphere in the region of the day-night terminator (APEX satellite experiment) are presented. It is shown that the observed attenuation of electrostatic radiation in a broad frequency band and fluctuations (variations) in the cutoff frequency of the electrostatic mode spectrum at the level of the local plasma or upper hybrid frequency are related to plasma heating by damping electrostatic oscillations in the ionospheric trough. Waveguide channels for propagation of electromagnetic whistler-mode waves observed on the satellite can be generated during the propagation of a gravity-thermal disturbance from the terminator.  相似文献   

7.
The paper addresses the study of the specific pattern of the subauroral ionosphere marked with the anomalous positions of the plasmapause, the equatorial boundary of the mid-latitude (main) ionospheric trough, and the light-ion trough under quiet solar and geophysical conditions near the magnetospheric shell with the McIlwain parameter L = 3. The anomaly was identified on the base of data of active experiments with the SURA heating facility on October 2, 2007, which were conducted as part of the SURA-International Space Station (SURA-ISS) program in the framework of the DEMETER satellite mission. Joint analysis of the orbital data from DEMETER and ISS, together with the results of the complex ground-based measurements, shows that the revealed effect, which is characteristic of the premidnight sector north of the Moscow-SURA satellite path, is not local. It is observed in a vast territory, extending from the west to the east along the same L-shell, from at least Sweden to Kamchatka. The conclusions suggested by the DEMETER data are supported by analysis of the meridional distributions of the F2-peak plasma frequencies provided by GPS radio probing of the ionosphere. Comparison of these results with the model latitudinal-longitudinal and meridional distributions of the F2-peak plasma density provided by the IRI 2007 and SMI (Russian standard model of the ionosphere) models shows that the model predictions are at odds with the empirical data.  相似文献   

8.

本文利用2014年9月到2017年8月全球高时空分辨率TEC数据对北半球四个经度带电离层中纬槽的发生率和槽极小位置的变化进行了统计研究.基于Kp指数,我们引入了一个包含地磁活动变化历史效应的地磁指数(Kp9)来分析中纬槽位置变化与地磁活动水平的关系.通过与其他地磁活动指数的对比,发现槽极小纬度与Kp9指数的相关性最好.此外,本文重点分析了中纬槽发生率及槽极小纬度的经度差异、季节变化、地方时变化以及与地磁活动强度等的关系.结果表明,中纬槽的发生率与经度关系不大,主要受到季节、地方时与地磁活动的影响.午夜中纬槽发生率在夏季较低,其随地方时的变化则呈现出负偏态分布的特点,在后半夜发生率更高,而地磁活动增强对中纬槽的发生具有明显的促进作用.对于槽极小纬度,其在四个经度带的分布差异不大,但月变化各不相同,其中-120°经度带呈单峰分布,在夏季槽极小纬度更高,而0°经度带夏季槽极小纬度更低.槽极小的位置显著依赖于地磁活动、地方时以及季节变化.一般说来,地磁活动越强,中纬槽纬度越低.中纬槽位置随地方时的变化有明显的季节差异,冬季昏侧槽极小纬度随地方时变化较快,弱地磁活动条件下22:00 LT前即达到最低纬度,其后位置几乎保持不变,而两分季槽极小纬度从昏侧至午夜都在降低,夏季槽极小纬度从昏侧连续下降至03:00 LT左右.

  相似文献   

9.
Complicated ionograms of topside sounding on board the Intercosmos-19 satellite, which were registered on November 26, 1980, in the dusk sector (1800 LT) at the latitudes of the equatorward wall (55°–62° ILAT) of the main ionospheric trough (MIT), are analyzed. They are characterized by the presence of two extra traces at distances larger than the main traces. Approaching the MIT minimum, all traces become more scattered, converge, and join into one strongly diffusive trace. An attempt of interpretation of the complicated ionograms on the basis of trajectory calculations performed by the method of characteristics in the “complex” two-dimensional version (in two mutually intersecting planes) is undertaken. The modeling shows that the extra traces could be related to the presence of a large-scale irregularity stretched along the geomagnetic meridian at the equatorward wall of the MIT. The calculations make it possible to estimate the parameters of the irregularity: the intensity is δfoF2 ∼ 30%, the length is several hundred kilometers, the semi-thickness is 50–60 km, and the height is 350 km. The possible formation causes of the irregularity are discussed. The intensification of the diffuseness of all traces is related to the increase in the intensity of small-scale irregularities, which is usually observed when approaching the MIT minimum.  相似文献   

10.
本文利用2000年至2009年CHAMP卫星朗缪尔探针实地测量的电子密度数据,分析了电离层中纬槽的位置变化及其控制因素.研究结果表明: (1) 地磁平静期电离层中纬槽的位置随磁地方时和经度变化; (2) 电离层中纬槽的位置对地理经度的依赖表现为西半球槽的位置高于东半球; (3) AE指数和SYM-H指数与槽的位置变化显著相关,表明极光电集流和环电流是中纬槽位置变化的重要控制因素; (4) 太阳风电场晨-昏分量的量值变化显著影响中纬槽位置,而其极性变化的影响相对较弱.研究结果对中纬槽建模有一定的参考价值.  相似文献   

11.
Millstone Hill ionospheric storm time measurements of the electron density and temperature during the ionospheric storms (15-16 June 1965; 29–30 September 1969 and 17–18 August 1970) are compared with model results. The model of the Earth’s ionosphere and plasmasphere includes interhemispheric coupling, the H+, O+(4S), O+(2D), O+(2P), NO+, O+2 and N+2 ions, electrons, photoelectrons, the electron and ion temperature, vibrationally excited N2 and the components of thermospheric wind.In order to model the electron temperature at the time of the 16 June 1965 negative storm, the heating rate of the electron gas by photoelectrons in the energy balance equation was multiplied by the factors 5–30 at he altitude above 700 km for the period 4.50-12.00 LT, 16 June 1965. The [O]/[N2] MSIS-86 decrease and vibrationally excited N2 effects are enough to account for the electron density depressions at Millstone Hill during the three storms. The factor of 2 (for 27–30 September 1969 magnetic storm) and the & actor 2.7 (for 16–18 August 1970 magnetic storm) reduction in the daytime peak density due to enhanced vibrationally excited N2 is brought about by the increase in the O++N2 rate factor.  相似文献   

12.

地基大功率电波加热电离层是通过地基大功率短波发射机向电离层发射无线电波,通过波-粒和波-波的相互作用将无线电波的能量注入电离层.通过这种有目的可操控的方式改变电离层电子密度和温度的分布,可以深入研究电离层中等离子体能量和物质的非线性演化过程,特别是电离层电子的非平衡态分布和加速问题.本文通过对电离层加热中几个比较重要物理过程的评述,对过去20年来我国研究学者在这一研究方向上取得的重要进展进行了介绍.

  相似文献   

13.
The global pattern of the ionospheric response to large-scale acoustic gravity waves (LS AGW) has been constructed on the basis of an analysis of the large data set available during the 22 March 1979, magnetic storm. Ground-based ionospheric measurements and in-situ satellite measurements from Cosmos-900 were used in this study together with the Joule heating distribution in the high-latitude ionosphere specifically taken at the maxima of two substorms. The characteristics of the reconstructed planetary pattern of the LS AGW have been analysed in detail. It has been established that the LS AGW effects in the ionosphere in terms of both universal and local time were determined by the pattern of high-latitude atmospheric heating, and that the wave front of the LS AGW during both substorms covered practically all local times, i.e. all longitudes. In addition, it was established that one of the sources of the LS AGW was the thermospheric heating in the day-side cusp region. The local time dependence of the amplitude of the AGW effect in both maximum height, hmF2, and critical frequency, fOF2, has been reconstructed for the mid-latitude F2 layer. The AGW effects were clearly separated from the electric field effects related to turnings of the interplanetary magnetic field (IMF) BZ. In the day-time, electric field effects prevailed over the AGW effects, but during the night-time the amplitudes of these two effects were comparable. In contrast to the common view, fOF2 variations after the AGW passage had a quasi-sinusoidal character both in the day-time and in the night-time. In the night-time ionosphere a high degree of symmetry was observed for the AGW effects in Northern and Southern hemispheres. During the day-time a significant asymmetry was observed in the American longitudinal sector which was related largely to the peculiarities of the heating pattern in the high-latitude ionospheres of the Northern and Southern hemispheres. These observations demonstrate the complexity of the response of the ionosphere at all latitudes to heating of the auroral region.  相似文献   

14.
In arid and semi-arid regions, many rivers experience extremely low flow conditions during seasonal dry periods. During these times, effluent from wastewater treatment plants can make up the majority of flow in the river. However, water quality in urban systems can also be strongly influenced by the natural or human-influenced flow regime and discharge from other anthropogenic sources such as industrial operations and runoff from impervious surfaces. In this study, we aimed to determine whether water quality was controlled primarily by wastewater discharge in an effluent-dominated river. Between May 2016–May 2019, we systematically measured water temperature, pH, dissolved oxygen, biochemical oxygen demand, and the concentrations of nitrate-N, ammonia-N, and orthophosphate in the South Platte River in the Denver metropolitan area, Colorado, USA. We found that, despite being an effluent-dominated river, wastewater treatment plant discharge was not the principal factor controlling water quality in many of the sampled areas. Non-point source pollution from impervious surfaces, delivered to the river through storm drains and minor tributary streams, also contributed to the high nutrient conditions in several locations. We also noted a strong seasonality in water quality, with higher concentrations of nutrients and higher biochemical oxygen demand in the winter months when wastewater effluent can make up more than 90% of the flow in the river. Thus, the interaction of discharge location and reduced seasonal flow produced spatio-temporal hot spots of diminished water quality. More stringent enforcement of water quality regulations may improve water quality in this system. However, a large portion of the pollution seems to be from non-point sources, which are very difficult to control.  相似文献   

15.
A model is proposed for the origin of hot spots that depends on the existence of major-element heterogeneities in the mantle. Generation of basaltic crust at spreading centers produces a layer of residual peridotite ~20–25 km thick directly beneath the crust which is depleted in Fe/Mg, TiO2, CaO, Al2O3, Na2O and K2O, and which has a slightly lower density than undepleted peridotite beneath it. Upon recycling of this depleted peridotite back into the deep mantle at subduction zones, it becomes gravitationally unstable, and tends to rise as diapirs through undepleted peridotite. For a density contrast of 0.05 g cm?3, a diapir 60 km in diameter would rise at roughly 8 cm y?1, and could transport enough heat to the base of the lithosphere to cause melting and volcanism at the surface. Hot spots are thus viewed as a passive consequence of mantle convection and fractionation at spreading centers rather than a plate-driving force.It is suggested that depleted diapirs exist with varying amounts of depletion, diameters, upward velocities and source volumes. Such variations could explain the occurrence of hot spots with widely varying lifetimes and rates of lava production. For highly depleted diapirs with very low Fe/Mg, the diapir would act as a heat source and the asthenosphere and lower lithosphere drifting across the diapir would serve as the source region of magmas erupted at the surface. For mildly depleted diapirs with Fe/Mg only slightly less than in normal undepleted mantle, the diapir could provide not only the source of heat but also most or all of the source material for the erupted magmas. The model is consistent with isotopic data that require two separate and ancient source regions for mid-ocean ridge and oceanic island basalts. The source for mid-ocean ridge basalts is considered to be material upwelling at spreading centers from the deep mantle. This material forms the oceanic lithosphere. Oceanic island basalts are considered to be derived from varying mixtures of sublithospheric and lower lithospheric material and the rising diapir itself.  相似文献   

16.
Summary Using the optimal shape design method, which is generally described, and von Herzen's et al. measurements of the heat flow, the shape of the lithosphere and its thermal field is computed in the vertical plane parallel to the hot spot source versus the plate velocity at a distance of about 250 km from the axis of the Hawaiian Island chain. The results are compared with the computations based on Crough's idea of thermal rejuvenation of the oceanic lithosphere above a hot spot source. If we assume that the lateral cross-section of the lithospheric bottom is described by the Gaussian curve h=h0 exp (–y2/22), we obtain h035 km and 130 km, where h is the value of lithospheric thinning and y the lateral coordinate. We thus obtain the lower limit of the lateral dimension of the Hawaiian anomaly.
u m¶rt; nmua nua amu, m u ma nuam, u ¶rt;a mn nm, ua a um u mn n mua nmu, naa mu um mum umua mu u ¶rt;a nuuum 250 m uuuaa aunaa. mam a uuu, au a u¶rt;u aa (Crough), aauu mn mu au um a¶rt; umu mu. u n¶rt;num, m ama nn u umu ¶rt;a nuam u aa h=h0 exp (–y2/22), m num h0 35 u 130 ,¶rt; h—umu mu u —amaa ¶rt;uama. ¶rt;am, =130 m u n¶rt; ama aaaa aauu.
  相似文献   

17.
The thermospheric and ionospheric effects of the precipitating electron flux and field-aligned-current variations in the cusp have been modelled by the use of a new version of the global numerical model of the Earths upper atmosphere developed for studies of polar phenomena. The responses of the electron concentration, ion, electron and neutral temperature, thermospheric wind velocity and electric-field potential to the variations of the precipitating 0.23-keV electron flux intensity and field-aligned current density in the cusp have been calculated by solving the corresponding continuity, momentum and heat balance equations. Features of the atmospheric gravity wave generation and propagation from the cusp region after the electron precipitation and field-aligned current-density increases have been found for the cases of the motionless and moving cusp region. The magnitudes of the disturbances are noticeably larger in the case of the moving region of the precipitation. The thermospheric disturbances are generated mainly by the thermospheric heating due to the soft electron precipitation and propagate to lower latitudes as large-scale atmospheric gravity waves with the mean horizontal velocity of about 690 ms–1. They reveal appreciable magnitudes at significant distances from the cusp region. The meridional-wind-velocity disturbance at 65° geomagnetic latitude is of the same order (100 ms–1) as the background wind due to the solar heating, but is oppositely directed. The ionospheric disturbances have appreciable magnitudes at the geomagnetic latitudes 70°–85°. The electron-concentration and -temperature disturbances are caused mainly by the ionization and heating processes due to the precipitation, whereas the ion-temperature disturbances are influence strongly by Joule heating of the ion gas due to the electric-field disturbances in the cusp. The latter strongly influence the zonal- and meridional-wind disturbances as well via the effects of ion drag in the cusp region. The results obtained are of interest because of the location of the  相似文献   

18.
Since the 1980s, application of thermal infrared satellite data for volcano monitoring has rapidly evolved to become a proven operational tool. Due to the large quantities of data provided by sensors in polar and geostationary orbits, as well as the sheer number of active volcanoes on earth, processing and managing such data sets requires an enormous amount of workforce. A number of algorithms have been developed to facilitate detection, location, and tracking of hot spots of active volcanoes. A collation and review of hot spot detection algorithms developed and applied by the volcanological community reveals three main types which have been applied to date: contextual, fixed threshold, and temporal. The founding algorithms for these three classes are VAST, MODVOLC, and RST, respectively. Through comparison with manually based detections, the performance of each algorithm was tested for sustained lava flows (Etna and Stromboli), strombolian activity (Stromboli), lava dome growth and collapse (Augustine), and fumarole fields (Vulcano). It is shown that, as the number of correctly identified anomalies increases, so too does the number of false positives. Although each of the algorithms operates well within the limits and criteria of their design requirements and application, under current data restraints, no algorithm can be expected to perform perfectly.  相似文献   

19.
Redox hot spots occurring as metal-rich anoxic groundwater discharges through oxic wetland and river sediments commonly result in the formation of iron (Fe) oxide precipitates. These redox-sensitive precipitates influence the release of nutrients and metals to surface water and can act as ‘contaminant sponges’ by absorbing toxic compounds. We explore the feasibility of a non-invasive, high-resolution magnetic susceptibility (MS) technique to efficiently map the spatial variations of magnetic Fe oxide precipitates in the shallow bed of three rivers impacted by anoxic groundwater discharge. Laboratory analyses on Mashpee River (MA, USA) sediments demonstrate the sensitivity of MS to sediment Fe concentrations. Field surveys in the Mashpee and Quashnet rivers (MA, USA) reveal several discrete high MS zones, which are associated with likely anoxic groundwater discharge as evaluated by riverbed temperature, vertical head gradient, and groundwater chemistry measurements. In the East River (CO, USA), widespread cobbles/rocks exhibit high background MS from geological ferrimagnetic minerals, thereby obscuring the relatively small enhancement of MS from groundwater induced Fe oxide precipitates. Our study suggests that, in settings with low geological sources of magnetic minerals such as lowland rivers and wetlands, MS may serve as a complementary tool to temperature methods for efficiently mapping Fe oxide accumulation zones due to anoxic groundwater discharges that may function as biogeochemical hot spots and water quality control points in gaining systems.  相似文献   

20.
Results of the observations performed using the wave-like disturbance (WLD) method at iono-spheric altitudes of 100–500 km during ten Soyuz and Proton rocket launches (RLs) in 2003–2005 have been analyzed. The observations were performed with the Kharkov incoherent scatter radar. It has been confirmed that WLDs propagated at a velocity of 560–740 m/s were observed reliably. Disturbances propagated at a higher velocity of several kilometers per second were observed indefinitely. Disturbances caused by RLs were most clearly defined at altitudes of 150–350 km. Rocket launches cased either enhancement or suppression of WLDs in the ionosphere. The relative amplitude of WLDs usually varied within 3–30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号