首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Quaternary Science Reviews》2007,26(3-4):322-335
An exposure within the central portion of a large drumlin at Port Byron, New York State, USA, part of the large New York drumlin field, reveals a sequence of steeply dipping cemented sands and gravels of proglacial, ice-contact deltaic origin overlain by a thin till veneer. The sands and gravels appear to have been deposited within the proximal proglacial environment during a late retreat phase of the Laurentide Ice Sheet sometime prior to being overridden by subsequent ice and drumlinized. During deposition of the ice-contact delta, escaping subglacial regelation-meltwater permeated the proximal deltaic sediment pile and calcium carbonate was released, in a series of pulses, to form pore-occluding calcite cement within the sand and gravel porespaces. The calcium carbonate precipitated into the sands and gravels due to a reduction in hydrostatic pressure and CO2 outgassing of the meltwater as it exited from beneath the ice sheet. Once cemented, these deltaic sediments were considerably stronger and acted afterward as an obstacle around which the future ice advance streamed and, in turn, produced the characteristic drumlin shape. In overriding the ice-contact deltaic sediments, the ice sheet emplaced a thin layer of till which exhibits syndepositional deformation features indicative of being emplaced as a deforming bed layer beneath the advancing ice sheet. Micromorphological analysis of the overlying till shows that no interstitial or intraclastic calcite occurs within the till.  相似文献   

3.
The drumlin field at Múlajökull, Iceland, is considered to be an active field in that partly and fully ice‐covered drumlins are being shaped by the current glacier regime. We test the hypothesis that the drumlins form by a combination of erosion and deposition during successive surge cycles. We mapped and measured 143 drumlins and studied their stratigraphy in four exposures. All exposures reveal several till units where the youngest till commonly truncates older tills on the drumlin flanks and proximal slope. Drumlins inside a 1992 moraine are relatively long and narrow whereas drumlins outside the moraine are wider and shorter. A conceptual model suggests that radial crevasses create spatial heterogeneity in normal stress on the bed so that deposition is favoured beneath crevasses and erosion in adjacent areas. Consequently, the crevasse pattern of the glacier controls the location of proto‐drumlins. A feedback mechanism leads to continued crevassing and increased sedimentation at the location of the proto‐drumlins. The drumlin relief and elongation ratio increases as the glacier erodes the sides and drapes a new till over the landform through successive surges. Our observations of this only known active drumlin field may have implications for the formation and morphological evolution of Pleistocene drumlin fields with similar composition, and our model may be tested on modern drumlins that may become exposed upon future ice retreat.  相似文献   

4.
Knight, J. 2010: Subglacial processes and drumlin formation in a confined bedrock valley, northwest Ireland. Boreas, 10.1111/j.1502‐3885.2010.00182.x. ISSN 0300‐9483. Subglacial processes beneath the Late Weichselian ice sheet in northwest Ireland are deduced from sediments and structures within drumlins in a bedrock valley at Loughros Beg, County Donegal. Here, a glacially smoothed bedrock surface underlies the drumlins, which are composed on their up‐ice side of stacked, angular rafts of local bedrock. Overlying and down‐ice from these rafts are down‐ice‐dipping beds of massive to bedded diamicton that contain sand and gravel interbeds. In a down‐ice direction the diamicton matrix coarsens and the beds become laterally transitional to water‐sorted gravels. The down‐ice end of one drumlin shows a concentrically bedded stratified gravel core aligned parallel to ice flow and resembling the internal structure of an esker. With distance away from this core, the gravels become more poorly sorted with an increase in matrix content, and are transitional to massive to stratified diamicton. A four‐stage model describes the formation of drumlins in this sediment‐poor setting. The sediments that are located directly above the bedrock represent deposition in a semi‐enclosed subglacial cavity. A trigger for this process was the formation of subglacial relief by the thrusting up of bedrock rafts, which created the leeside cavity. Subsequent sediment deposition into this cavity represents a form of feedback (self‐regulation), which may be a typical characteristic of subglacial processes in sediment‐poor settings.  相似文献   

5.
Glacial lineations on a bank area and a coastal lowland, both bordering the Norwegian Channel, are studied with regard to morphology and distribution by means of side-scan sonar data, detailed digital maps and fieldwork. Their genesis and age are further elucidated through stratigraphic and sedimentologic information from excavations in one typical coast-parallel drumlin. Four excavated sections revealed four lithologic units: Prodeltaic glaciomarine sand, glaciofluvial gravel, glaciomarine diamicton and deformation till. After Middle Weichselian delta progradation, glaciomarine diamicton was deposited and later subglacially reworked by a northwards flowing glacier. The two upper diamictons form the main volume of the ridge, which is interpreted as a drumlin, and imply a reinterpretation of the Jæren part of the so-called Lista moraine. Preconsolidation of glaciomarine diamicton suggests a maximum ice thickness of 500 m during drumlin formation, indicating an ice surface slope of 1 m/km. The occurrence of sediments that provided low basal shear stresses, and the orientation of drumlins and megaflutes indicating ice confluence both point to high glacier flow velocities and suggest that an ice stream, rather than a slower moving part of the ice sheet, occupied the Norwegian Channel during the Late Weichselian maximum. Deformation till overlying, more or less, undeformed glaciomarine diamicton suggests that high glacier velocities during periods of low driving stresses were possible due to a subglacial deformable layer.  相似文献   

6.
Mapping, analysis and interpretation of glacigenic sediments in the King Valley, Tasmania has led to a revision of the Pleistocene stratigraphy of Tasmania. The sediments provide evidence of a glaciation that occurred between the Middle Pleistocene Henty Glaciation and the Early Pleistocene Linda Glaciation. The Moore Glaciation is estimated, on the basis of weathering rinds, amino-acid dating and palaeomagnetism to have occurred between 400000 and 550000 yrs BP. At Baxter Rivulet, sediments of the Moore Glaciation rest unconformably on highly weathered till and weathered Ordovician limestone and are overlain by outwash gravel of the Henty Glaciation. The Moore Glaciation sediments can be divided into four formations on the basis of lithology, organic content and degree of chemical weathering. The Huxley Formation (oldest) was deposited by an ice advance of the Mt. Jukes Glacier and is overlain by the Baxter Formation. The Baxter Formation consists of a bed of organic silty sand which records a cool non-forested flora of an interstadial period. The overlying Pyramid and Moore formations are outwash gravels from the Mt. Jukes and King Valley glaciers respectively. Though deposited during the same general ice advance, these two gravels were deposited at different times and show that the glaciers of the West Coast Range had spatially differentiated responses to climatic change.  相似文献   

7.
Graphical and numerical reconstructions of the Rainy and Superior lobes of the Laurentide Ice Sheet suggest that drumlin formation was time transgressive. Suites of glacial landforms including drumlins, tunnel valleys, eskers, and ice-collapse features can be correlated with specific recessional ice margins and are used as boundary conditions in the modeling. A contour map of the ice surface is then drawn using a specified basal shear stress. The shear stress can be constant or allowed to vary with position on the bed and is chosen to be consistent with the subglacial regime indicated by field evidence. Assuming that ice flow is parallel to drumlin orientations and perpendicular to the ice surface contours and moraines, the trend of drumlin axes is best accommodated by time transgressive drumlin formation during minor stillstands in the overall ice recession. The alternative, that drumlins were formed while the ice was at the Late Wisconsin maximum limit, requires large spatial variations in the basal shear stress distribution and therefore implies large mass-balance gradients or large variations in basal sliding velocities over small distances, for which there is little evidence.  相似文献   

8.
9.
The sedimentology of three sand-cored drumlins in central Ulster. Northern Ireland is described. The sand-cores of the drumlins consist of complex sequences of cohesive sediment gravity forms, grain-flow deposits, turbiditic sands and deltaic sands and gravels, showing complex fades relationships. The bulk of the sediments formed in water-filled cavities associated with a major subglacial meltwater escape route excavated in bedrock. The sand-cores are overlain by a streamlined carapace of basal melt-out till. A model is presented to account for spatial variations in faeies arrangement within the sand-cores. Three specific meltwater depositional subenvironments were recognised: (1) main channel axis, (2) main channel flank, and (3) minor tributary channel. The sand-cores formed prior to the main phase of basal melt-out till deposition and before drumlin streamlining.  相似文献   

10.
Much previous research at surge-type glaciers has sought to identify features diagnostic of surge-type behaviour. However, in comparatively little work have subglacial landform–sediment characteristics been used to reconstruct changing basal processes and conditions during surge events. Subglacial bedforms described in this article are associated with the 1991 surge of Skeiðarárjökull, Iceland, and include a series of drumlins with superimposed flutes and basal crevasse-fill ridges. The drumlins were formed by the subglacial erosion of ice-contact fans. Sedimentary evidence indicates a shift from rigid-bed to soft-bed conditions during the surge. The presence of eroded but undeformed fan sediments suggests that they acted as a rigid bed when initially overridden. Subsequent deposition of a layer of deformation till resulted in a change to soft-bed conditions and the generation of flutes and subglacial crevasse-fill ridges. The lack of mixing between this till and the underlying stratified sediments indicates that subglacial sediment deformation was restricted to a thin layer and that its deposition resulted in a cessation of subglacial erosion. The drumlin is therefore a composite of both rigid-bed and soft-bed processes that illustrates changes in basal conditions and processes during the course of the event. The limited time frame in which the drumlin formed and the presence of kettleholes across its surface are distinctive features that may warrant further investigation in the search for features diagnostic of past surge events.  相似文献   

11.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

12.
Ice streams are major dynamic elements of modern ice sheets, and are believed to have significantly influenced the behaviour of past ice sheets. Funen Island exhibits a number of geomorphological and geological features indicative of a Late Weichselian ice stream, a land-based, terminal branch of the major Baltic Ice Stream that drained the Scandinavian Ice Sheet along the Baltic Sea depression. The ice stream in the study area operated during the Young Baltic Advance. Its track on Funen is characterized by a prominent drumlin field with long, attenuated drumlins consisting of till. The field has an arcuate shape indicating ice-flow deflection around the island's interior. Beneath the drumlin-forming till is a major erosional surface with a boulder pavement, the stones of which have heavily faceted and striated upper surfaces. Ploughing marks are found around the boulders. Exact correspondence of striations, till fabric and drumlin orientation indicates a remarkably consistent flow direction during ice streaming. We infer that fast ice flow was facilitated by basal water pressure elevated to the vicinity of the flotation point. The ice movement was by basal sliding and bed deformation under water pressure at the flotation level or slightly below it, respectively. Subglacial channels and eskers post-dating the drumlins mark a drainage phase that terminated the ice-stream activity close to the deglaciation. Identification of other ice streams in the Peribaltic area is essential for better understanding the dynamics of the land-based part of the Scandinavian Ice Sheet during the last glaciation.  相似文献   

13.
The macro‐ and micro‐sedimentology of a supraglacial melt‐out till forming at the Matanuska Glacier was examined in relationship to the properties of the stratified basal zone ice and debris from which it is originating. In situ melting of the basal ice has produced a laminated to bedded diamicton consisting mainly of silt. Macroscopic properties include: discontinuous laminae and beds; lenses of sand, silt aggregates and open‐work gravel; deformed and elongate clasts of clay; widely dispersed pebbles and cobbles, those that are prolate usually with their long axes subparallel to parallel to the bedding. Evidence for deformation is absent except for localized bending of beds over or under rock clasts. Microscopic properties are a unique element of this work and include: discontinuous lineations; silt to granule size laminae; prolate coarse sand and rock fragments commonly with their long axis subparallel to bedding; subangular to subrounded irregular shaped clay clasts often appearing as bands; sorted and unsorted silt to granule size horizons, sometimes disrupted by pore‐water pathways. Limited deformation occurs around rock clasts and thicker parts of lamina. This study shows that in situ melting of debris‐rich basal ice can produce a laminated and bedded diamicton that inherits and thereby preserves stratified basal ice properties. Production and preservation of supraglacial melt‐out till require in situ melting of a stagnant, debris‐rich basal ice source with a low relief surface that becomes buried by a thick, stable, insulating cover of ice‐marginal sediment. Also required are a slow melt rate and adequate drainage to minimize pore‐water pressures in the till and overlying sediment cover to maintain stability and uninterrupted deposition. Many modern and ancient hummocky moraines down glacier of subglacial overdeepenings probably meet these process criteria and their common occurrence suggests that both modern and pre‐modern supraglacial melt‐out tills may be more common than previously thought.  相似文献   

14.
The history of Quaternary sedimentation in the subtidal Wash is described using high-resolution seismic profiles. The Pleistocene sequence is divided into three depositional units, comprising Anglian till overlain by possible Late Devensian subglacial scour fill and lacustrine sediments. These latter sediments may provide further evidence for a lake in the Wash impounded by ice along the Lincolnshire–Norfolk coast. The Holocene sequence is divided into six depositional units, each truncated by the one above. Estuarine sediment resting on a marine flooding surface forms the earliest unit. This sediment was partially eroded by migration of the shoreface as the marine flooding progressed landward. The following four units comprise sand and gravel banks deposited on the erosion surface. Bank deposition was followed by an episode of tidal scour caused either by increased tidal current velocities following reclamation of the Fenland or by breakdown of postulated former offshore barriers. The youngest and most extensive Holocene unit rests on the scoured surface and comprises several types of deposit. These are: large sand banks around the periphery of the subtidal area with sediment extending seawards into two NE–SW aligned troughs; low sand banks on a central ridge dividing the troughs and partially covering the sediments in the troughs; thick gravels towards the mouth of the Wash; muddy sediments forming drapes over the sand in the centre of the Wash. The data provide information on the variety of processes related to the advance and retreat of Pleistocene ice sheets in eastern England and the subsequent Holocene marine flooding of the Wash–Fenland embayment. The Holocene sequence reveals periods of widespread sedimentation separated by periods of both local and regional erosion, with possible implications for climatic and hydrodynamic change. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
16.
A multi-proxy approach involving a study of sediment architecture, grain size, grain roundness and crushing index, petrographic and clay mineral composition, till fabric and till micromorphology was applied to infer processes of till formation and deformation under a Weichselian ice sheet at Kurzetnik, Poland. The succession consists of three superposed till units overlying outwash sediments deformed at the top. The textural characteristics of tills vary little throughout the till thickness, whereas structural appearance is diversified including massive and bedded regions. Indicators of intergranular bed deformation include overturned, attenuated folds, boudinage structures, a sediment-mixing zone, grain crushing, microstructural lineations, grain stacking and high fabric strength. Lodgement proxies are grooved intra-till surfaces, ploughing marks and consistently striated clast surfaces. Basal decoupling by pressurized meltwater is indicated by undisturbed sand stringers, sand-filled meltwater scours under pebbles and partly armoured till pellets. It is suggested that the till experienced multiple transitions between lodgement, deformation and basal decoupling. Cumulative strain was high, but the depth of (time-transgressive) deformation much lower (centimetre range) than the entire till thickness ( ca 2 m) at any point in time, consistent with the deforming bed mosaic model. Throughout most of ice overriding, porewater pressure was high, in the vicinity of glacier floatation pressure indicating that the substratum, consisting of 11 m thick sand, was unable to drain subglacial meltwater sufficiently.  相似文献   

17.
Four major sedimentary facies are present in coarse-grained, ice-marginal deposits from central East Jylland, Denmark. Facies A and B are matrix-supported gravels deposited by subaerial sediment gravity flows as mudflows (facies A) and debris flows (facies B). Facies C consists of clast-supported, water-laid gravels and facies D are cross-bedded sand and granules. The facies can be grouped into three facies associations related to the supraglacial and proglacial environments: (1) the flow-till association is made up of alternating beds of remobilized glacial mixton (facies A) and well-sorted cross-bedded sand (facies D); (2) the outwash apron association resembles the sediments of alluvial fans in containing coarse-grained debris-flow deposits (facies B), water-laid gravel deposited by sheet floods (facies C) and cross-bedded sand and granules (facies D) from braided distributaries; (3) the valley sandur association comprises water-laid gravel (facies C) interpreted as sheet bars and longitudinal bars interbedded with cross-bedded sand and granules (facies D) deposited in channels between bars in a braided environment.The general coarsening-upward trend of the sedimentary sequences caused by the transition of bars and channel-dominated facies to debris-flow-dominated facies indicate an increasing proximality of the outwash deposits, picturing the advance and still stand of a large continental lowland ice-sheet. The depositional properties suggest that sedimentation was caused by melting along a relatively steep, active glacier margin as a first step towards the final vanishing of the Late Weichselian icesheet (the East Jylland ice) covering eastern Denmark.  相似文献   

18.
Regional‐scale, high‐resolution terrain data permit the study of landforms across south‐central Ontario, where the bed of the former Laurentide Ice Sheet is well exposed and passes downflow from irregular topography on Precambrian Shield highlands to flat‐lying Palaeozoic carbonate bedrock, and thick (50 to >200 m) unconsolidated sediment substrates. Rock drumlins and megagrooves are eroded into bedrock and mega‐scale glacial lineations (MSGL) occur on patchy streamlined till residuals in the Algonquin Highlands. Downflow, MSGL pass into juxtaposed rock and drift drumlins on Palaeozoic bedrock and predominantly till‐cored drumlins in areas of thick drift. The Lake Simcoe Moraines, now traceable for more than 80 km across the Peterborough drumlin field (PDF), form a distinct morphological boundary: downflow of the moraine system, drumlins are larger, broader and show no indication of subsequent reworking by the ice, whereas upflow of the moraines, a higher degree of complexity in bedform pattern and morphology is distinguished. Discrete radial and/or cross‐cutting flowset terminate at subtle till‐cored moraine ridges downflow of local topographic lows, indicating multiple phases of late‐stage ice flow with strong local topographic steering. More regional‐scale flow switching is evident as NW‐orientated bedforms modify drumlins south of the Oak Ridges Moraine, and radial flowset emanate from areas within the St. Lawrence and Ottawa River valleys. Most of the drumlins in the PDF formed during an early, regional drumlinization phase of NE–SW flow that followed the deposition of a thick regional till sheet. These were subsequently modified by local‐scale, topographically controlled flows that terminate at till‐cored moraines, providing evidence that the superimposed bedforms record dynamic ice (re)advances throughout the deglaciation of south‐central Ontario. The patterns and relationships of glacial landform distribution and characteristics in south‐central Ontario hold significance for many modern and palaeo‐ice sheets, where similar downflow changes in bed topography and substrate lithology are observed.  相似文献   

19.
This paper describes the results of a spatially dense anisotropy of magnetic susceptibility (AMS) till fabric study of a single drumlin in the Weedsport Drumlin Field, New York State, USA. AMS till fabrics provide a robust, quantitative and unbiased approach to assess subglacial till kinematics and infer ice‐flow dynamics. The drumlin selected for this detailed investigation was systematically sampled at 18 locations to evaluate the patterns of ice flow and associated till kinematics within a drumlin and to test erosional vs. depositional models for its formation. AMS till fabric analysis yielded strong fabrics that increase in strength towards the drumlin crest, indicating that bed deformation occurred during till deposition and that deformation within the drumlin was greater than that in the interdrumlin low. Fabric orientations reveal drumlin convergent, divergent and parallel ice‐flow paths that illustrate a complex interaction between ice flow and the drumlin form; fabric strength and shape reveal systematic differences in bed deformation between the interdrumlin and drumlin regions. These observations are inconsistent with purely erosional models of drumlin genesis; instead, these observations are more consistent with syndepositional streamlining of till transported, probably locally as a deforming bed, from the interdrumlin low towards the drumlin locality.  相似文献   

20.
We report new ages on glaciofluvial (outwash) sediment from a large upland in northern Lower Michigan—the Grayling Fingers. The Fingers are cored with > 150 m of outwash, which is often overlain by the (informal) Blue Lake till of marine isotope stage (MIS) 2. They are part of an even larger, interlobate upland comprised of sandy drift, known locally as the High Plains. The ages, determined using optically stimulated luminescence (OSL) methods, indicate that subaerial deposition of this outwash occurred between 25.7 and 29.0 ka, probably associated with a stable MIS 2 ice margin, with mean ages of ca. 27 ka. These dates establish a maximum-limiting age of ca. 27 ka for the MIS 2 (late Wisconsin) advance into central northern Lower Michigan. We suggest that widespread ice sheet stabilization at the margins of the northern Lower Peninsula, during this advance and later during its episodic retreat, partly explains the thick assemblages of coarse-textured drift there. Our work also supports the general assumption of a highly lobate ice margin during the MIS 2 advance in the Great Lakes region, with the Fingers, an interlobate upland, remaining ice-free until ca. 27 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号