首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quaternions and the rotation of a rigid body   总被引:1,自引:0,他引:1  
The orientation of an arbitrary rigid body is specified in terms of a quaternion based upon a set of four Euler parameters. A corresponding set of four generalized angular momentum variables is derived (another quaternion) and then used to replace the usual three-component angular velocity vector to specify the rate by which the orientation of the body with respect to an inertial frame changes. The use of these two quaternions, coordinates and conjugate moments, naturally leads to a formulation of rigid-body rotational dynamics in terms of a system of eight coupled first-order differential equations involving the four Euler parameters and the four conjugate momenta. The equations are formally simple, easy to handle and free of singularities. Furthermore, integration is fast, since only arithmetic operations are involved.  相似文献   

2.
Attitude dynamics of perturbed triaxial rigid bodies is a rather involved problem, due to the presence of elliptic functions even in the Euler equations for the free rotation of a triaxial rigid body. With the solution of the Euler–Poinsot problem, that will be taken as the unperturbed part, we expand the perturbation in Fourier series, which coefficients are rational functions of the Jacobian nome. These series converge very fast, and thus, with only few terms a good approximation is obtained. Once the expansion is performed, it is possible to apply to it a Lie-transformation. An application to a tri-axial rigid body moving in a Keplerian orbit is made.  相似文献   

3.
This paper concerns the dynamics of a rigid body of finite extent moving under the influence of a central gravitational field. A principal motivation behind this paper is to reveal the hamiltonian structure of the n-body problem for masses of finite extent and to understand the approximation inherent to modeling the system as the motion of point masses. To this end, explicit account is taken of effects arising because of the finite extent of the moving body. In the spirit of Arnold and Smale, exact models of spin-orbit coupling are formulated, with particular attention given to the underlying Lie group framework. Hamiltonian structures associated with such models are carefully constructed and shown to benon-canonical. Special motions, namely relative equilibria, are investigated in detail and the notion of anon-great circle relative equilibrium is introduced. Non-great circle motions cannot arise in the point mass model. In our analysis, a variational characterization of relative equilibria is found to be very useful. Thereduced hamiltonian formulation introduced in this paper suggests a systematic approach to approximation of the underlying dynamics based on series expansion of the reduced hamiltonian. The latter part of the paper is concerned with rigorous derivations of nonlinear stability results for certain families of relative equilibria. Here Arnold's energy-Casimir method and Lagrange multiplier methods prove useful. This work was supported in part by the AFOSR University Research Initiative Program under grant AFOSR-87-0073, by AFOSR grant 89-0376, and by the National Science Foundation's Engineering Research Centers Program: NSFD CDR 8803012. The work of P.S. Krishnaprasad was also supported by the Army Research Office through the Mathematical Sciences Institute of Cornell University.  相似文献   

4.
5.
A rigorously valid nonlinear oscillator analog of the torque-free rotational dynamics of a general rigid body is presented. The analog consists of threeuncoupled nonlinear oscillators, the motion of each being governed by a second order nonlinear ordinary differential equation of the Duffing type. The nonlinear oscillator analog and three associated phase planes, as established herein, provide a new basis for analysis and visualization of rigid body dynamics. The phase planes are particularly useful in providing complete visibility of the motion's limiting cases and stability properties.  相似文献   

6.
The equations of motion of a rigid body about a fixed point in a central Newtonian field is reduced to the equation of plane motion under the action of potential and gyroscopic forces, using the isothermal coordinates on the inertia ellipsoid.The construction of periodic solutions near the equilibrium points, by using the Lipaunov theorem of holomorphic integral, is obtained and the necessary and sufficient conditions for the stability of the system are given.  相似文献   

7.
Interaction between orbital motion and attitude libration dynamics of an arbitrary rigid body moving in a central Newtonian field is considered to second order. Advantage is taken of the decoupling between inplane-pitch and roll-yaw out-of-plane motion to restrict the motion to the orbital plane by an appropriate choice ofinitial conditions. An averaged solution to the nonlinear inplane-pitch equations whose accuracy is determined by ignoring terms of order {·G32/a 2, 2,2,G32/a 2} and higher is presented. The results show that the near-resonant motion is characterized by a periodic interchange of energy between the attitude and orbital motion.Associate Professor, Department of Aeronautics and Astronautics.  相似文献   

8.
The dynamical interaction of a binary or planetary system and a third body moving on a hyperbolic orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in binary star disruption and exchange and planetary system exchange or capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the third body also produces similar effects. These type of changes make exchange or disruption of the component masses more likely as also does increasing the eccentricity of the binary.

The critical distances and Hill stability ranges associated with the possible formation of roughly equal mass trans-Neptunian binaries from three-body interactions are determined for a range of secondary component masses.  相似文献   


9.
A software system for normalization of a Hamiltonian function is described. A few examples of its applications are given. It is written in PASCAL and runs on an IBM XT/AT with 640 KB memory.  相似文献   

10.
A new perturbation method for the determination of proper elements of an asteroid in the gravitational field of a migrating planet is developed. The article is published in the original.  相似文献   

11.
This paper is based on the restricted problem of three bodies with the unusual feature that the lightest particle is replaced by a rigid body. The attitude stability of the body is considered when its centre of mass is located at one of the equilibrium points. The stable attitude is determined when the satellite is stationary relative to the primaries. It is found that for some bodies there are two such attitudes, and these are determined.  相似文献   

12.
Hamiltonian mechanics is applied to the problem of the rotation of the elastic Earth. We first show the process for the formulation of the Hamiltonian for rotation of a deformable body and the derivation of the equations of motion from it. Then, based on a simple model of deformation, the solution is given for the period of Euler motion, UT1 and the nutation of the elastic Earth. In particular it is shown that the elasticity of the Earth acts on the nutation so as to decrease the Oppolzer terms of the nutation of the rigid Earth by about 30 per cent. The solution is in good agreement with results which have been obtained by other, different approaches.  相似文献   

13.
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.  相似文献   

14.
Attitude stability of spacecraft subjected to the gravity gradient torque in a central gravity field has been one of the most fundamental problems in space engineering since the beginning of the space age. Over the last two decades, the interest in asteroid missions for scientific exploration and near-Earth object hazard mitigation is increasing. In this paper, the problem of attitude stability is generalized to a rigid spacecraft on a stationary orbit around a uniformly-rotating asteroid. This generalized problem is studied via the linearized equations of motion, in which the harmonic coefficients $C_{20}$ and $C_{22}$ of the gravity field of the asteroid are considered. The necessary conditions of stability of this conservative system are investigated in detail with respect to three important parameters of the asteroid, which include the harmonic coefficients $C_{20}$ and $C_{22}$ , as well as the ratio of the mean radius to the radius of the stationary orbit. We find that, due to the significantly non-spherical shape and the rapid rotation of the asteroid, the attitude stability domain is modified significantly in comparison with the classical stability domain predicted by the Beletskii–DeBra–Delp method on a circular orbit in a central gravity field. Especially, when the spacecraft is located on the intermediate-moment principal axis of the asteroid, the stability domain can be totally different from the classical stability domain. Our results are useful for the design of attitude control system in the future asteroid missions.  相似文献   

15.
A new method of computing the preliminary orbit of a celestial body based on four pairs of angle measurements has been suggested. The method makes use of preliminary orbit previously constructed by the author based on two position vectors and a corresponding time interval, taking into account the main part of the perturbations in the motion of the body under study. Using the example of constructing the orbit of the minor planet 1383 Limburgia, the results obtained using a four-position procedure of the Gaussian type based on the solution of a two-body problem have been compared with those of the new method. The comparison showed the new method to be highly efficient for perturbed motion studies. It is especially advantageous in the case of high-accuracy observation data on small orbital arcs.  相似文献   

16.
The exact analytic solution is introduced for the rotational motion of a rigid body having three equal principal moments of inertia and subjected to an external torque vector which is constant for an observer fixed with the body, and to arbitrary initial angular velocity. In the paper a parametrization of the rotation by three complex numbers is used. In particular, the rows of the rotation matrix are seen as elements of the unit sphere and projected, by stereographic projection, onto points on the complex plane. In this representation, the kinematic differential equation reduces to an equation of Riccati type, which is solved through appropriate choices of substitutions, thereby yielding an analytic solution in terms of confluent hypergeometric functions. The rotation matrix is recovered from the three complex rotation variables by inverse stereographic map. The results of a numerical experiment confirming the exactness of the analytic solution are reported. The newly found analytic solution is valid for any motion time length and rotation amplitude. The present paper adds a further element to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.  相似文献   

17.
18.
19.
In the present work we consider asymmetric gyrostat which has a homogeneous viscoelastic disc and two bars attached to it. Furthermore, the gyrostat has a rotor oriented inside it such that the rotor is statically and dynamically balanced. This sytem has a rotational motion around its center of mass in a circular orbit under a central gravitational field. Bending vibrations of the bars and the disc are accompanied by dissipation of energy, which is the cause of the evolution of the system's rotational motion. Using the method of separation of motion and averaging, the approximate equations describing the evolution of rotational motion in terms of Andoyer canonical variables are obtained. The stationary motions for the system are deduced, together with the conditions of its stability.  相似文献   

20.
Periodic rotations of a rigid body close to the flat motions were found. Their orbital stability was investigated. Analysis was done up to second order of the small parameter. It was proved that solutions found are orbitally stable except of the third order resonance case. This resonance do not appear if terms up to the first order of small parameter are considered only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号