首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A geochronology and Hf isotope study, using laser ablation-ICP-MS analysis of zircon grains, has been conducted to date felsic volcanic rocks from the Portuguese sector of the Iberian Pyrite Belt and to establish possible sources for these rocks. The ages obtained range from the Famennian to the Tournaisian, with the oldest ages reported in the Belt so far being identified in its southwestern part (Cercal area). Results also indicate that within each area, volcanism may have extended for significant periods of time. This suggests that caution is needed in interpreting possible migration trends for the volcanism, as the exact stratigraphic position of the sampled rocks is not always clear. Despite of this, the new data, coupled with previously reported information, suggests that volcanism migrated within the basin from the southwest to the northeast (present day coordinates). Projection from initial zircon ?Hf values towards the depleted mantle evolution curve, via an intermediate reservoir, allows the calculation of Hf protolith model ages that are predominantly Meso-Proterozoic. This is compatible with acid magmas resulting from the fusion of Phyllite–Quartzite (PQ) Formation metasedimentary rocks, which are beneath the volcanic rocks. This is because zircon grains from one PQ Formation sample provided Late Neo-Proterozoic ages and Paleo-Proterozoic to Late Archean U–Pb ages, and the Hf isotope signatures of these zircons can be expected to mix during fusion and result in protolith model ages that would be intermediate between the two U–Pb age populations, as recorded. Further supporting this source for the magmas, the distribution of U–Pb ages of (pre-Variscan) inherited zircon grains in the volcanic rocks is very similar to that shown by the detrital zircon grains from a PQ sample.  相似文献   

3.
The Hongseong area, located in the western Gyeonggi Massif, South Korea, can be correlated with the northern margin of the South China block (Yangtze Craton). This area experienced Neoproterozoic igneous activity related to subduction before the amalgamation of Rodinia. Several isolated, lenticular, and serpentinized ultramafic–mafic bodies occur in the Hongseong area. The Baekdong body, one of the largest ultramafic bodies, has been highly deformed and metamorphosed to eclogite- and granulite-facies. The petrogenesis and tectonic environment of the Baekdong rocks are assessed using the composition of unaltered cores of spinel and olivine grains, and show that these rocks represent the mantle section of a suprasubduction ophiolite. The rocks originated from oceanic lithosphere that formed during the transition from nascent back-arc to mature island arc, related to subduction roll-back. During the back-arc stage, Al-rich spinel harzburgite formed through melt–rock interaction caused by the intrusion of magma. This magma was produced in small amounts, by less than 10% of partial melting of the wedge mantle. Subsequently, during the mature island arc stage, Cr-rich spinel dunite formed through melt–rock interaction caused by the intrusion of relatively evolved magma that formed by 30–35% partial melting due to a high input of volatiles from the subducted slab and sediments. The Baekdong ultramafic rocks, together with the Bibong ultramafic rocks, indicate that a suprasubduction tectonic setting prevailed before the amalgamation of Rodinia (at 860–890 Ma) in the Hongseong area, which may be an extension of the northern margin of the Yangtze Craton.  相似文献   

4.
Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks from the Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ancestral margins of present-day Northeast Asia.Ion microprobe data for magmatic zircon domains from eight mafic to intermediate orthogneisses in the Tateyama and Tsunogawa areas yielded weighted mean ~(206)Pb/~(238)U ages spanning the entire Permian period(302–254 Ma).Under cathodoluminescence,primary magmatic growth zones in the zircon crystals were observed to be partially or completely replaced by inward-penetrating,irregularly curved featureless or weakly zoned secondary domains that mostly yielded U–Pb ages of 250–240 Ma and relatively high Th/U ratios( 0.2).These secondary domains are considered to have been formed by solid-state recrystallization during thermal overprints associated with intrusions of Hida granitoids.Available whole-rock geochemical and Sr–Nd isotope data as well as zircon age spectra corroborate that the Hida Belt comprises the Paleozoic–Mesozoic Cordilleran arc system built upon the margin of the North China Craton,together with the Yeongnam Massif in southern Korea.The arc magmatism along this system was commenced in the Carboniferous and culminated in the Permian–Triassic transition period.Highly positive εHf(t) values( +12) of late Carboniferous to early Permian detrital zircons in the Hida paragneisses indicate that there was significant input from the depleted asthenospheric mantle and/or its crustal derivatives in the early stage of arc magmatism.On the other hand,near-chondritic εHf(t) values(+5 to-2) of magmatic zircons from late Permian Hida orthogneisses suggest a lithospheric mantle origin.Hf isotopic differences between magmatic zircon cores and the secondary rims observed in some orthogneiss samples clearly indicate that the zircons were chemically open to fluids or melts during thermal overprints.Resumed highly positive zircon εHf(t) values(+9) shared by Early Jurassic granitoids in the Hida Belt and Yeongnam Massif may reflect reworking of the Paleozoic arc crust.  相似文献   

5.
《Gondwana Research》2013,23(3-4):843-854
The Western Dharwar Craton in peninsular India comprises a typical Meso- to Neo-Archean granite-greenstone terrain. Detrital zircons from two metagreywackes in a late basin from the Gadag Greenstone Belt preserve at least eight age populations ranging in age from ca 3.34 to 2.55 Ga, and grains as old as ca 3.54 Ga. The zircon provenances for the two samples appear to be the same up to ca 3.25 Ga, with relatively juvenile εHf values largely between zero and depleted mantle values. After 3.25 Ga, one sample has similar εHf values whereas the other has only negative values indicative of Hf-evolution in a crustal environment. After ca 3.25 Ga the source regions for the two samples were distinctly different.The detrital zircons reflect the age and evolution of the upper crust of the Western Dharwar Craton. Modeling of Hf isotopic evolution of the detrital zircons suggests two major crust-forming events at ca. 3.6 and 3.36 Ga, and some indication of juvenile addition to the crust at ca 2.6 Ga. The maximum sedimentation age of the greywackes is constrained by the youngest detrital zircon population at 2547 ± 5 Ma. Gold mineralization in the belt is dated at 2522 ± 6 Ma and constrains greywacke sedimentation, deformation and metamorphism to a ca 25 my interval.  相似文献   

6.
Rare earth element (REE) mineralization is hosted within Neoproterozoic alkaline metaigneous rocks in the northwestern part of the Okcheon Metamorphic Belt (OMB), a polymetamorphosed fold-and-thrust belt transecting the Paleoproterozoic Gyeonggi and Yeongnam Massifs in the southern Korean Peninsula. The principal carrier phase of REEs is allanite. Allanite grains can be subdivided into several types based on the texture and mineral assemblage including quartz, K-feldspar, biotite, britholite, apatite, fergusonite, andradite, magnetite, zircon, titanite and fluorite. Electron microprobe analysis of allanite clearly distinguishes sample-to-sample variations in total REEs, Ca, Al, Fe and Y but the textural varieties from each rock sample do not show marked differences in those elements. Sensitive high-resolution ion microprobe dating of allanite and zircon reveals a complex history of multistage mineralization. Allanite grains from REE ores yielded Late Ordovician (444.6 ± 8.0 Ma), Permian to Triassic (ca. 300–220 Ma) and Early Jurassic (199–183 Ma) 208Pb/232Th ages. These multiple age components often coexist in single grains showing slight differences in backscattered electron brightness. The Ordovician components have distinctly higher Th/U than the younger domains in the same rock sample. The cores and rims of zircon from a syenite hosting REE ore bodies yielded Neoproterozoic (858.2 ± 6.3 Ma) and Early Jurassic (ca. 190 Ma) 206Pb/238U ages, respectively. The Early Jurassic ages (194–187 Ma) also obtained from zircon grains from granites taken from dykes occurring close to the ores and a drill core indicate the correspondence between granitic magmatism and REE mineralization. The Neoproterozoic zircon inheritance (weighted mean = 853.9 ± 3.8 Ma) in these granites is in sharp contrast to the dominant Paleoproterozoic inherited zircon from the widespread earliest Middle Jurassic granites enclosing the mineralized zone. The geotectonic significance of the Late Ordovician event recorded in the allanite, as well as in detrital zircon from the OMB, is still unclear but its temporal coincidence with intraplate volcanism and arc-related igneous activity, respectively, reported from the southwestern edge of the adjacent Taebaeksan Basin and the southwestern Gyeonggi Massif is noteworthy. The following Permian–Triassic and Early Jurassic mineralization events are probably linked to the continental suturing between the North and South China blocks and subsequent post-orogenic magmatism, and arc magmatism resulting from the paleo-Pacific plate subduction, respectively. Sub-grain Sm–Nd isotopic analyses of allanite by laser ablation multiple collector ICPMS yielded initial εNd values plotting along the Nd isotopic evolution path of the Neoproterozoic metaigneous rocks, indicating that REEs originating from the host rock have been recycled during multistage mineralization events. The profound differences in inherited zircon ages and Nd isotopic compositions between the Early and Middle Jurassic granites may reflect the presence of a major thrust-bounded crustal structure beneath the OMB.  相似文献   

7.
The southern segment of the Eastern Ghats Mobile Belt (EGMB) in India was an active convergent margin during Mesoproterozoic, prior to the final collision in Neoproterozoic during the assembly of the Rodinia supercontinent. Here we present mineralogical, whole-rock geochemical, zircon U–Pb and Hf isotopic data from a granitoid suite in the Bopudi region in the EGGB. The granitoid complex comprises quartz monzodiorite with small stocks of rapakivi granites. The monzodiorite, locally porphyritic, contains K-feldspar megacrysts, plagioclase, quartz, biotite and ortho-amphibole. The presence of mantled ovoid megacrysts of alkali feldspar embaying early-formed quartz, and the presence of two generations of the phenocrystic phases in the rapakivi granites indicate features typical of rapakivi granites. The K-feldspar phenocrysts in the rapakivi granite are mantled by medium-grained aggregates of microcline (Ab7 Or93), which is compositionally equivalent to the rim of Kfs phenocryst and Pl (An23–24 Ab75). The geochemistry of both the granitoids shows arc-like features for REE and trace elements. LA-ICP-MS zircon analyses reveal 207Pb/206Pb ages of 1582 (MSWD = 1.4) for the rapakivi granite 1605 ± 3 Ma (MSWD = 3.9) for the monzodiorite. The zircons from all the granitoid samples show high REE contents, prominent HREE enrichment and a conspicuous negative Eu anomaly, suggesting a common melt source. The zircons from the monzodiorite have a limited variation in initial 176Hf/177Hf ratios of 0.28171–0.28188, with εHf(t) values of −2.2 to +2.8. Correspondingly, their two-stage Hf isotope model ages (TDM2) ranging from 2.15 to 2.47 Ga probably suggest a mixed source for the magma involving melting of the Paleoproterozoic basement and injection of subduction-related juvenile magmas. The prominent Mesoproterozoic ages of these granitoids suggest subduction-related arc magmatism in a convergent margin setting associated with the amalgamation of the Columbia-derived fragments within the Neoproterozoic Rodinia assembly.  相似文献   

8.
This paper presents a great number of detrital zircon U–Pb ages from the Middle Triassic to the Middle Jurassic sediments in the Jiyuan basin, southern North China. The results represent age spectra from 2.9 Ga to 216 Ma, with five peaks at 2.5 Ga, 1.9 Ga, 840 Ma, 440 Ma, and 270 Ma and two grains of ∼220 Ma. The ages of 2.5 Ga and 1.9 Ga are mainly derived from the Precambrian basement of the North China Block, whereas the others are typical characteristics of the Qinling orogenic belt. An important observation is that the Qinling-sourced detrital zircons become older as the strata get younger. Samples from the Middle Triassic to early Late Triassic strata are characterized by the age peak at 270 Ma, whereas the Late Late Triassic to Early Middle Jurassic samples are dominated by age peaks at 840 Ma and 440 Ma and minor grains within 800–650 Ma. Two grains of ∼220 Ma are preserved in the Late Middle Jurassic sample, which may be contributed by the Carnian deep plutons. These signatures indicate that the unroofing pattern of the Qinling orogenic belt developed by the denudation of materials from young covers to old basements and the Carnian deep plutons. Integrated with the data reported from the Hefei Basin, it is well-established that the intensity of unroofing increased from the Qinling to the Dabie orogen in the Early Jurassic, and the denudation timing of the ultra-high pressure (UHP) and high pressure (HP) rocks or Carnian plutons changed successively from the Early Jurassic in the Dabie to the Late Middle Jurassic in the Qinling orogen.  相似文献   

9.
Zircon formation and modification during magmatic crystallization and high-grade metamorphism are explored using TIMS and LA-ICP-MS U–Pb geochronology, Lu–Hf isotope chemistry, trace element analysis and textural clues on zircons from the Koraput alkaline intrusion, Eastern Ghats Belt (EGB), India. The zircon host-rock is a granulite-facies nepheline syenite gneiss with an exceptionally low Zr concentration, prohibiting early magmatic Zr saturation. With zircon formation occurring at a late stage of advanced magmatic cooling, significant amounts of Zr were incorporated into biotite, nearly the only other Zr-bearing phase in the nepheline syenite gneisses. Investigated zircons experienced a multi-stage history of magmatic and metamorphic zircon growth with repeated solid-state recrystallization and partial dissolution–precipitation. These processes are recorded by complex patterns of internal zircon structures and a wide range of apparently concordant U–Pb ages between 869 ± 7 Ma and 690 ± 1 Ma. The oldest ages are interpreted to represent the timing of the emplacement of the Koraput alkaline complex, which significantly postdates the intrusion ages of most of the alkaline intrusion in the western EGB. However, Hf model ages of TDM = 1.5 to 1.0 Ga suggest an earlier separation of the nepheline syenite magma from its depleted mantle source, overlapping with the widespread Mesoproterozoic, rift-related alkaline magmatism in the EGB. Zircons yielding ages younger than 860 Ma have most probably experienced partial resetting of their U–Pb ages during repeated and variable recrystallization events. Consistent youngest LA-ICP-MS and CA-TIMS U–Pb ages of 700–690 Ma reflect a final pulse of high-grade metamorphism in the Koraput area and underline the recurrence of considerable orogenic activity in the western EGB during the Neoproterozoic. Within the nepheline syenite gneisses this final high-grade metamorphic event caused biotite breakdown, releasing sufficient Zr for local saturation and new subsolidus zircon growth along the biotite grain boundaries.  相似文献   

10.
Wang  Yongbin  Zeng  Qingdong  Guo  Lixiang  Guo  Yunpeng 《Mineralogy and Petrology》2019,113(1):99-118
Mineralogy and Petrology - The Xing-Meng Orogenic Belt (XMOB) hosts significant Au-dominant polymetallic mineral deposits. Although these deposits mostly formed in the Mesozoic, Permian Au deposits...  相似文献   

11.
Syn-rift deposits often provide the only means to determine the chronology of rift initiation and evolution. However, the earliest syn-rift packages deposited in Jurassic – Cretaceous rift basins that formed during the breakup of SW Gondwana are poorly understood because they are deeply buried beneath overlying passive margin sequences. The exhumed remnants of several such rift basins are exposed in the southern Cape of South Africa and contain the Suurberg and Uitenhage groups, which are predominantly continental, taphrogenic, fossiliferous strata interbedded with volcaniclastics. Here we present the first robust U–Pb chronostratigraphic framework for these groups by dating zircon in nine pyroclastic and five resedimented volcaniclastic deposits using Laser Ablation – Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). To further improve the precision and accuracy of the results, we utilize Chemical Abrasion – Thermal Ionisation Mass Spectrometry (CA-TIMS) on four selected samples minimizing the effects of Pb-loss and further constraining depositional uncertainties. We thereby show that the Suurberg Group was deposited rapidly during the emplacement of the Karoo Large Igneous Province in the Early Jurassic and likely predates the main phase of rifting, whereas the Uitenhage Group was deposited over a prolonged (>40 Ma) period beginning in the Early Jurassic and continuing into the Early Cretaceous. The Uitenhage Group records two phases of rifting: an initial Jurassic episode that roughly coincides with the separation of East and West Gondwana and is contemporaneous with widespread volcanism in SW Gondwana, and a subsequent period of renewed rifting during the Early Cretaceous opening of the South Atlantic and initiation of the Agulhas Falkland Transform. This framework illustrates the complexity of long-lived rift-basin sedimentation and highlights the importance of high-resolution chronostratigraphy when investigating and integrating the tectonic, palaeogeographic and palaeontological records from the final stages of a unified SW Gondwana.  相似文献   

12.
The Dahongshan iron deposit is hosted in the Paleoproterozoic submarine metavolcanic rocks of the Dahongshan Group in the Yangtze Block, South China. LA-ICP-MS dating of hydrothermal zircon grains from the genetically associated albitite and dolomite albitite show ca. 2008 Ma ages that are consistent with the zircon ages from the host metavolcanic rocks (ca. 2012 Ma), and postdated the post-ore diabase dike (ca. 1724 Ma), marking the Dahongshan iron deposit as the oldest submarine volcanic-hosted deposit so far as known. The ore-hosting metavolcanic rocks in the Dahongshan deposit have low Ni (9.1–77.4 ppm), Cr (1.0–63.0 ppm) and Co contents (5.6–62.9 ppm), suggesting the fractionation of olivine, clinopyroxene and plagioclase within the magma chamber. The major and trace element features of the alkaline to tholeiitic metavolcanic rocks are consistent with high-degree partial melting of the mantle wedge metasomatized by melts enriched in high field strength elements (HFSEs), which were derived from the subducted slab in volcanic arc setting. Based on an evaluation of the morphology of orebody, ore fabrics, petrology and melt-fluid inclusions, as well as the geochemical characteristics of the major ore mineral (magnetite), we correlate the iron mineralization in the Dahongshan deposit with hydrothermal process induced by the high-temperature, high-salinity and Fe-rich brines derived through magmatic exsolution. The similar characteristic of Ce and Eu anomalies of the Dahongshan iron deposit and banded iron formations (BIFs) suggest that the Dahongshan deposit was formed in reducing environment, although the two types of iron ores were generated through distinct processes with hydrothermal processes dominating for the submarine volcanic-hosted iron deposits whereas the BIFs were formed through chemical precipitation.  相似文献   

13.
The Borborema Province has three major subprovinces. The northern subprovince lies north of the Patos shear zone and is comprised of Paleoproterozoic cratonic basement with Archean nuclei, plus overlying Neoproterozoic supracrustal rocks and Brasiliano plutonic rocks. The central subprovince occurs between the Patos and Pernambuco shear zones and is mainly comprised of the Zona Transversal. The southern subprovince occurs between the Pernamabuco shear zone and the São Francisco craton and is comprised of a tectonic collage of various blocks, terranes, or domains ranging in age from Archean to Neoproterozoic. This report focuses on the Zona Transversal, especially on Brasiliano rocks for which we have the most new information.Paleoproterozoic gneisses with ages of 2.0–2.2 Ga occur discontinuously throughout the Zona Transversal. The Cariris Velhos suite consists of metavolcanic, metasedimentary, and metaplutonic rocks yielding U–Pb zircon ages of 995–960 Ma. This suite is mainly confined to a 100 km wide belt that extends for more than 700 km within the Alto Pajeú terrane. Sm–Nd model ages in metaigneous rocks cluster about 1.3–1.6 Ga, indicating that older crust was involved in genesis of their magmas. Brasiliano supracrustal rocks dominate the Piancó-Alto Brígida terrane, and they probably also constitute significant parts of the Alto Pajeú and Rio Capibaribe terranes. They are only slightly older than early stages of Brasiliano plutonism, with detrital zircon ages at least as young as 620 Ma; most TDM ages range from 1.2 to 1.6 Ga.Brasiliano plutons range from ca. 640 to 540 Ma, and their TDM ages range from 1.2 to 2.5 Ga. Previous workers have shown significant correlations among U–Pb ages, Sm–Nd model ages, petrology, and geochemistry, and we are able to reinforce and extend these correlations. Stage I plutons formed 640–610 Ma and have TDM ages less than 1.5 Ga. Stage II (610–590 Ma) contains few plutons, but coincides with the peak of compressional deformation, metamorphism, and formation of migmatites. Stage III plutons (590 to ca. 575 Ma) have older TDM ages (ca. 1.8–2.0 Ga), as do Stage IV plutons (575 to ca. 550 Ma; TDM from 1.9 to 2.4 Ga). Stage III plutons formed during the transition from compressional to transcurrent deformation, while Stage IV plutons are mainly post-tectonic. Stage V plutons (550–530 Ma) are commonly undeformed (except along younger shear zones) and have A-type geochemistry. The five stages have distinct geochemical properties, which suggest that the tectonic settings evolved from early, arc-related magma-genesis (Stage I) to within-plate magma-genesis (Stage V), with perhaps some intermediate phases of extensional environments.  相似文献   

14.
《Gondwana Research》2013,24(4):1599-1606
Direct radiometric dating of the Lower/Middle Permian epochs has not been well accomplished. Shales and bedded cherts of the geologically well-documented Middle Permian Gufeng Formation are exposed in the Chaohu area, Anhui province, South China. Through detailed field examination and mapping of the Gufeng stratigraphic section, we found at least four volcanic ash beds within the basal shale strata. This new discovery indicates the existence of prominent volcanic activity during Gufeng sedimentation and provides the opportunity to precisely date the age of the Middle Permian. Zircon grains separated from two near-basal horizon yield LA‐ICP‐MS U–Pb ages of 272.0 ± 5.5 Ma (MSWD = 2.6) and 271.5 ± 3.3 Ma (MSWD = 1.7). As the first precise isotopic age (272 Ma) of the Middle Permian Gufeng Formation in South China, our data offer precise geochronological constraints for the division and correlation of Middle Permian not only in South China but also worldwide.  相似文献   

15.
The Balkhash Metallogenic Belt (BMB) in Kazakhstan, Central Asia, with the occurrence of the super-large Kounrad and Aktogai, the large Borly porphyry Cu–Mo deposits, and the large Sayak skarn polymetallic ore-field, is one of the central regions of the Paleozoic Central Asian metallogenic domain and orogenic belt. In this study, newly obtained SHRIMP zircon U–Pb ages of nine samples and 40Ar/39Ar ages of six mineral samples (inclding hornblende, biotite and K-feldspar) give more detailed constraints on the timing of the granitic intrusions and their metallogeny. Porphyritic monzonite granite and tonalite porphyry from the Kounrad deposit yield U–Pb zircon SHRIMP ages of 327.3 ± 2.1 Ma and 308.7 ± 2.2 Ma, respectively. Quartz diorite and porphyritic granodiorite from the Aktogai deposit yield U–Pb SHRIMP ages of 335.7 ± 1.3 Ma and 327.5 ± 1.9 Ma, respectively. Porphyritic granodiorite and granodiorite from the Borly deposit yield U–Pb SHRIMP ages of 316.3 ± 0.8 Ma and 305 ± 3 Ma, respectively. Diorite, granodiorite, and monzonite from the Sayak ore-field yield U–Pb SHRIMP ages of 335 ± 2 Ma, 308 ± 10 Ma, and 297 ± 3 Ma, respectively. Hornblende, biotite, and K-feldspar from the Aktogai deposit yield 40Ar/39Ar cooling ages of 310.6 Ma, 271.5 Ma, and 274.9 Ma, respectively. Hornblende, biotite, and K-feldspar from the Sayak ore-field yield 40Ar/39Ar cooling ages of 287.3 ± 2.8 Ma, 307.9 ± 1.8 Ma, and 249.8 ± 1.6 Ma, respectively. The new ages constrain the timing of Late Paleozoic felsic magmatism to ∼336 to ∼297 Ma. Skarn mineralization in the Sayak ore-field formed at ∼335 and ∼308 Ma. Porphyry Cu–Mo mineralization in the Kounrad deposit and the Aktogai deposit formed at ∼327 Ma, and in the Borly deposit at ∼316 Ma. The Late Paleozoic regional cooling in the temperature range of ∼600 °C to ∼150 °C occurred from ∼307 to ∼257 Ma.  相似文献   

16.
The Donggebi Mo deposit located in NW China is a newly discovered, large, stockwork-type Mo deposit with ore reserves of 441 Mt @ 0.115% Mo. Ore bodies occur along faults and fractures at the external contact zone of a concealed porphyritic granite and volcaniclastic rocks of Gandun Formation, spatially associated with a fine-grained granite. Mo-bearing veins are mainly assemblages of volatile-rich K-feldspar-quartz-oxide, K-feldspar-quartz, polymetallic sulfides and calcite-quartz. Zircon LA-ICP-MS U–Pb dating yielded concordant ages of 234.6 ± 2.7 Ma and 231.8 ± 2.4 Ma for the porphyritic granite and the fine-grained granite, respectively; molybdenite Re–Os dating gave an isochron age of 234.0 ± 2.0 Ma. These ages further confirm an important and extensive magmatic-metallogenic event in Eastern Tianshan during the Triassic Indosinian orogeny. Whole-rock major and trace element analyses indicate that the granitic rocks associated with Mo mineralization are high in Si, K, Rb, Th, Nb, Ta, Ga and LREE, but low in P, Ti, Sr and Ba, belonging to high-K calc-alkaline granites with A-type features. Magma was likely derived from the re-melting of thickened lower crust in a post-collision compression environment in the Late Permian, experienced strong crystal fractionation and formed the large Donggebi Mo deposit under an intra-plate extension setting in the Early to Middle Triassic.  相似文献   

17.
The genesis of mineralized systems across the Mountain Freegold area, in the Dawson Range Cu–Au?±?Mo Belt of the Tintina Au province was constrained using Pb and stable isotope compositions and Ar–Ar and Re–Os geochronology. Pb isotope compositions of sulfides span a wide compositional range (206Pb/204Pb, 18.669–19.861; 208Pb/204Pb, 38.400–39.238) that overlaps the compositions of the spatially associated igneous rocks, thus indicating a magmatic origin for Pb and probably the other metals. Sulfur isotopic compositions of sulfide minerals are broadly similar and their δ34S (Vienna-Canyon Diablo Troilite (V-CDT)) values range from ?1.4 to 3.6 ‰ consistent with the magmatic range, with the exception of stibnite from a Au–Sb–quartz vein, which has δ34S values between ?8.1 and ?3.1 ‰. The δ34S values of sulfates coexisting with sulfide are between 11.2 and 14.2 ‰; whereas, those from the weathering zone range from 3.7 to 4.3 ‰, indicating supergene sulfates derived from oxidation of hypogene sulfides. The δ13C (Vienna Peedee Belemnite (VPDB)) values of carbonate range from ?4.9 to 1.1 ‰ and are higher than magmatic values. The δ18O (V-SMOW) values of magmatic quartz phenocrysts and magmatic least-altered rocks vary between 6.2 and 10.1 ‰ and between 5.0 and 10.1 ‰, respectively, whereas altered magmatic rocks and hydrothermal minerals (quartz and magnetite) are relatively 18O-depleted (4.2 to 7.9 ‰ and ?6.3 to 1.5 ‰, respectively). Hydrogen isotope compositions of both least-altered and altered igneous rock samples are D-depleted (from ?133 to ?161 ‰ Vienna-Standard Mean Ocean Water (V-SMOW)), consistent with differential magma degassing and/or post-crystallization exchange between the rocks and meteoric ground water. Zircon from a chlorite-altered dike has a U–Pb crystallization age of 108.7?±?0.4 Ma; whereas, the same sample yielded a whole-rock Ar–Ar plateau age of 76.25?±?0.53 Ma. Likewise, molybdenite Re–Os model ages range from 75.8 to 78.2 Ma, indicating the mineralizing events are genetically related to Late Cretaceous volcano-plutonic intrusions in the area. The molybdenite Re–Os ages difference between the nearby Nucleus (75.9?±?0.3 to 76.2?±?0.3 Ma) and Revenue (77.9?±?0.3 to 78.2?±?0.3 Ma) mineral occurrences suggests an episodic mineralized system with two pulses of hydrothermal fluids separated by at least 2 Ma. This, in combination with geological features suggest the Nucleus deposit represents the apical and younger portion of the Revenue–Nucleus magmatic-hydrothermal system and may suggest an evolution from the porphyry to the epithermal environments.  相似文献   

18.
The Qin–Hang ore belt in South China, which serves as the boundary between the Yangtze and Cathaysia blocks, is marked by extensive Jurassic porphyry-skarn-metasomatic Cu–Pb–Zn polymetallic mineralization. In this contribution, S and Pb isotopic compositions of the Baoshan Cu–Pb–Zn deposit in the western portion of the Qin–Hang ore belt were analyzed to determine the ore-forming material sources in the area. This is coupled by the first systematic collection, compilation and interpretation of previously published S and Pb isotopic data of multiple sulfide minerals to reveal the metal origin and accumulation mechanism of the Cu–Pb–Zn mineralization from the significant deposits in the region (i.e., Dexing, Qibaoshan, Shuikoushan, Baoshan, Huangshaping, Tongshanling and Dabaoshan). The results show that Cu mineralization is characterized by low and narrow δ34S (‰) range of values (–5 to 6) and Pb isotopic ratios (208Pb/204Pb = 38.0–39.0, 207Pb/204Pb = 15.4–15.8, and 206Pb/204Pb = 17.7–18.7), which are consistent with those of local porphyries. In contrast, the Pb–Zn mineralization reveals higher and more variable δ34S (‰) values (–4 to 18) and Pb isotopic ratios (208Pb/204Pb = 38.0–39.5, 207Pb/204Pb = 15.3–16.0, and 206Pb/204Pb = 18.0–19.0) that correspond to wall-rock and basement rock compositions in the region. This indicates that the sulfur and lead that formed the Cu mineralization in the Qin–Hang ore belt was mainly sourced from regional magmatism with mantle contributions, whereas the sulfur and lead for the Pb–Zn mineralization was likely derived from the host sedimentary rocks and Proterozoic metamorphic basement rocks, respectively. The S and Pb isotopic data, combined with the geochemical signatures of mineralization-related porphyries, suggest that the Cu was sourced from the deeper levels along with mantle-derived magmas. In contrast, the Pb–Zn probably originated from the crust, with partial melting of the crystalline basement in the Cathaysia Block. Consequently, a three-stage genetic model is proposed to explain the ore-forming processes of the Qin–Hang Cu-polymetallic belt in South China.  相似文献   

19.
The footwall volcanic rocks of the Ordovician Tanjianshan Group in the world-class Xitieshan Pb–Zn deposit have experienced prolonged arc volcanism followed by strong metamorphism and deformation. This has resulted in a complex thermal history and led to ambiguity in interpretation of zircon geochronological results. An integrated study involving textural characterization, CL imaging, trace element analysis, Ti-in-zircon thermometry and LA-ICPMS U–Pb dating has provided tight constraints on the age and genesis of the zircon groups in the volcanic rocks. The temperature of metamorphism and deformation indicated by metacryst minerals and micro-structures in the volcanic rocks ranges from 550 to 650 °C, which partially overlaps with the lower temperature range of zircon crystallization (600–750 °C) calculated using the Ti-in-zircon thermometer. Cathodoluminescence images and trace element compositions confirm a magmatic origin for the zircons, which have also been variably altered by metamorphic fluids. Two ranges of U–Pb ages, 475–470 Ma and 460–450 Ma, have been obtained on typical magmatic zircons and are interpreted to represent pre-mineralization arc volcanism in the Xitieshan deposit. A younger age group of 440–430 Ma for the fluid-modified zircons is considered to record post-ore metamorphism during the North Qadaim Orogeny. Thus, we propose that the original exhalative ores at the Xitieshan Pb–Zn deposit formed at 450–440 Ma.  相似文献   

20.
Zircon textures and micro-chemical compositions precisely record the origin and petrogenesis of granitoids, which are crucial for evaluating crustal growth and reworking, thermal and geodynamic evolution. Zircons in peraluminous granitoids from the three largest 820 Ma complexes (Guibei, Yueyang and Jiuling) in the Jiangnan Fold Belt in South China are used to constrain their sources and petrogenetic processes. Zircons in the Guibei granitoids have complex internal structures. Nearly all magmatic and inherited zircons have similar εHf (?6.8 to +5.6) and δ18O values (8.8–11.6 ‰) and dominantly lie between εHf evolution vectors for a crust created between 1.7 and 2.1 Ga, suggesting that the Guibei granitoids were produced by partial melting of recycled heterogeneous supracrustal material. However, the Yueyang granitoids contain zircons with high εHf (?0.5 to +9.7) and relatively low δ18O values (5.9–8.4 ‰) and two-stage model ages of 1.1–1.8 Ga, and thus may have been formed by melting of mafic rocks from the lower crust. The Jiuling granitoids and their enclaves contain more complex zircons with more variable εHf (?7.2 to +9.7) and δ18O values (7.0–10.6 ‰), and lie along the mixing trend between the above-proposed infracrustal and supracrustal granitoids. Therefore, the Neoproterozoic peraluminous granitoids in the Jiangnan Fold Belt were produced by melting and mixing of continental crust. Compared with extremely low (≤4 ‰) and negative δ18O values of Neoproterozoic igneous zircons formed in its northern active continental margin, the high δ18O peraluminous granitoids in the southeastern Yangtze Block are considered to have been formed by melting of hydrothermally unaltered continental crust triggered by asthenosphere upwelling in the Nanhua back-arc basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号