首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Comptes Rendus Geoscience》2008,340(2-3):151-165
This paper provides some new evidences on stratigraphic sequence, zircon SHRIMP dating from ophiolite, granitoids, and fold-and-thrust tectonic styles in the South China Block (SCB). Stratigraphic studies suggest that the eastern and central parts of the SCB show a SW-dipping palaeoslope framework during the Late Palaeozoic–Early Mesozoic. These areas were not in a deep-sea environment, but in a shallow-sea or littoral one. Coeval volcanic rocks are missing. Deep-water deposits and submarine volcanism only took place in the western part of the SCB. The three ophiolitic mélanges of the eastern SCB formed in the Neoproterozoic, but not in the Permian or the Triassic. The sedimentary rocks associated with the Neoproterozoic oceanic relics contain abundant Proterozoic acritarchs, but no radiolarians. The Early Mesozoic granitoids (235–205 Ma) belong to the post-collision peraluminous S-type granites; they are widely exposed in the central-western SCB, and rare in the eastern SCB. The fold-and-thrust belt developed in the eastern SCB shows a top-to-the-south displacement, whereas the Xuefengshan Belt of central SCB indicates a north- or northwest-directed shearing. The geodynamic settings of the different parts of the SCB during the Triassic are discussed.  相似文献   

2.
The Late Jurassic-Cretaceous Yanshanian Orogeny (or “Yenshan Movement”), one of the most important tectonothermal events, is first recognized in China, especially eastern China. This Late Mesozoic orogeny, which was initiated most likely by a Mesozoic tectonic switch, strongly reworked or destructed the older continental lithospheres or cratonic keels that are manifested by alternating compressive and extensional deformation, voluminous igneous rocks, and a variety of characteristic magmatic-hydrothermal mineral systems. Despite its first discovery and definition in Yenshan-Yinshan area of North China craton, the Yanshanian Orogeny probably is of global tectonic, magmatic and metallogenic significance. However, there have been hot debates on the precise starting time, accurate duration or time-interval, detailed processes and evolution linked to deep lithospheres, tectonic nature, and geodynamic mechanism(s) of the Yanshanian Orogeny, which inevitably have hindered the understanding of the genesis, mineralizing processes and geodynamic mechanism of the Late Mesozoic magmatic-hydrothermal mineral systems.This Special Issue captures some of the latest research results on the Yanshanian ore deposits that are involved into a few main Mesozoic metallogenic belts or provinces, from northeast to southwest China, including: (1) the Jiaodong Peninsula metallogenic province in the North China Craton, (2) the Middle-Lower Yangtze River Valley metallogenic belt in the central eastern China, (3) the Jiangnan and (4) the Nanling metallogenic belts in the South China Block, (5) the southeastern China Coast metallogenic belt, and (6) the Sanjiang metallogenic belt in southwest China. Through a multidisciplinary study, this Special Issue re-investigated and re-evaluated the relationship between the Late Mesozoic magmatic-hydrothermal mineral systems and the Yanshanian tectonothermal events in the studied metallogenic belts or provinces. A few important contributions to the topic in this Special Issue (Yanshanian metallogeny) are summarized as followings: (1) A new ore-deposit type, i.e. the “intracontinental reactivation” type, has been suggested to interpret the genesis of those Au-(polymetallic) deposits that are hosted within older metamorphic rocks and related to the Late Mesozoic basin-and-range extensional settings; (2) Late Mesozoic re-activation of the preexisting structures by the Yanshanian tectono-thermal event(s) might be an important mechanism controlling the Yanshanian large-scale mineralization; (3) A-type granites formed by partial melting of the Mesoproterozoic crust, but with inputs from mantle-derived melt are also favorable for Sn mineralization, in addition to S-type and I-type granites as previously recognized; (4) Calculated oxygen fugacities (ƒO2) of granitic magmas based on chemical compositions of primary biotite have been confirmed to be effective proxy for distinguishing Cu-Au-Mo-W-Sn-Pb-Zn mineralized granites from barren granites; (5) A significant epoch of W–Sn magmatic-hydrothermal ore system at ca. 145–135 Ma has been identified in the southeastern China Coast metallogenic belt; and (6) In addition to traditional structural geology, mineralogy, petrology, geochemistry and geochronology, new analytical techniques (e.g. Cu isotopes) and data treatment method (e.g., Bi-dimensional empirical mode decomposition) can be used to provide more constraints for deep exploration.  相似文献   

3.
4.
5.
6.
1IntroductionDuring the Mesozoic there occurred large-scalemagmatism and mineralization in South China.As amain part of East Asian,the South China continent isan extremely complex region,involving multi-stageMesozoic tectono-magmatism.Therefore,various hy…  相似文献   

7.
1 Deepwater Settings of Marginal Seas一the Frontier of Oil and Gas Exploration From the perspective of geographical environment,the areas of global oil and gas exploration can be divided into land,shallow water and deep water areas.The timespan of oil and gas discovery in each field is different.Oil and gas have been discovered on land since ancient tinies,but the application of modern technology to discover oil and gas began in 1859 in Pennsylvania,USA(Hua,1984).Largescale oil and gas exploration began in the 1920s,and the reserve discovery reached its peak in the 1960s and 1970s.  相似文献   

8.
9.
1 Deepwater Settings of Marginal Seas—the Frontier of Oil and Gas Exploration From the perspective of geographical environment, the areas of global oil and gas ...  相似文献   

10.
Tungsten Enrichment in the South China—type Massive Sulphide Deposits   总被引:3,自引:0,他引:3  
Tungsten is a characteristic element of the South China-type massive sulphide deposits that were formed on the continental crust.The high contents of tungsten in these deposits are attributed to the pri-mary enrichment of this element in the basement sequences of the region,providing an indication of the tungsten-enrichment in the continental crust.Tungsten in thd basement sequences was mobilized and trans-ported to the massive sulphides by a combination of different geological processes such as terrigenous sedimentation,submarine hydrothermal deposition and magmatic hydrothermal superimposition.  相似文献   

11.
High‐resolution tomographic images of the belt crossing the Japan Trench‐Changbai Mountains‐Dong Ujimqin Qi are represented in this paper, revealing the shape of a subducted slab in the western Pacific region and characteristics of the lithospheric structures under the Changbai Mountains and the Da Hinggan Mountains. Studies of the spatial distribution, subduction time and the time‐lag between the subduction and magmatism, combined with petrology and isotope geochemistry of the Late Mesozoic volcano‐plutonic rocks from the Da Hinggan Mountains‐Yanshan Mountains have further proved the independence of magmatic activities from the subduction of the Pacific plate. The Mesozoic tectono‐thermal evolutionary history and structural characteristics of the lithosphere in the Da Hinggan Mountains and North China suggest that the formation and evolution of magma have probably a close relationship with the delamination and thinning of the continental lithosphere and the underplating resulting from the consequent upwelling of the asthenosphere. On the other hand, the large‐scale strike‐slip fault system, resulting from sinistral shearing of the Pacific plate relative to the Asian continent in the Mesozoic, is responsible for the formation and emplacement of magma on the continental margin. It was the intense crust‐mantle interaction, together with structural deformation at the shallower levels that led to the large tectono‐magmatic belt in the East Asian continental margin.  相似文献   

12.
《Precambrian Research》1986,33(4):255-264
The Rooiberg (Felsite) Group is a rare example of a conformable succession that apparently spans the period of evolution of an oxygen-rich atmosphere. This conclusion is reached indirectly from a review of the Proterozoic stratigraphy of South Africa, and directly from a consideration of the Rooiberg itself. The atmospheric transition coincides with the stratigraphic interval between the dark silicic lavas and associated grey volcaniclastics of the Damwal Formation, and the overlying red rhyodacites and intercalated red-bed sedimentary rocks of the Selonsrivier Formation. Radiometric age measurements indicate that this transition occurred after 2224 ± 21 Ma but before 2090 ± 40 Ma.  相似文献   

13.
The authors have proposed a dynamic model in this paper based on the ages,rock series and associations,Sr-Nd isotopic signatures of the Mesozoic intracontinental magmatism overlying the Cathaysian and Yangtze blocks.The model describes the relation of intracontinental collision and subduction in the Tethyan tectonic regie with Paleo-Pacific oceanic plate sudbuction-strike slip-extension in the Pacific tectonic regime.During 220-150Ma,the horizontal collision between the North China block and the Yangtze block,as well as the intracontinental subduction of some divergent microcontinental terranes in the southwestern part of South China are ascribed to the influence of the Tethyan tectonic regime,giving rise to a volume of high-Isr and low-εNd(t) S-type granites only in the Cathaysian Block.During 145-90Ma,under the geodynamic backgound of subduction-strike slip-extension of the Paleo-Pacific oceanic plate on the basis of the deep tectonic process in the Tethyan tectonic regime,high-K,alkalirich calc-alkaline and shoshonitic volcano-plutonic complexes were generated in the Yangtze block,and high-K calc-alkalic and bimodal volcano-plutonic complexes were generated in the Cathaysian block.The occurrence of A-type peralkaline granites in the coastal areas of South east China indicates the end of Mesozoic intracontinental magmatism.  相似文献   

14.
ABSTRACT

The Nanling range (Nanling) is characterized by intense and widespread Mesozoic magmatism related large-scale W–Sn mineralization. A summary of geochemistry, geochronology, and petrogenesis for the W–Sn-bearing granites has been carried out in this study. A series of rock- and ore-forming ages in Nanling indicate that the W–Sn mineralization is closely related to the Early Yanshanian granitic magmatism both in temporal and spatial dimensions (165–150 Ma). Geochemical features show that both of the W- and Sn-bearing granites, which mainly belong to highly fractionated I-type granites with a few A-type granites, are characterized by high contents of SiO2, Al2O3, Na2O, and K2O; enrichment in Rb, Th, U, Zr, Hf, and REE; depletion in Sr, Ba, P, and Ti; and high ratios of A/CNK. Furthermore, the different Sr–Nd–Hf isotopic compositions indicate that they are mainly originated from the partial melting of the Precambrian basement rocks of the Cathaysia Block at low oxygen fugacity, and the estimated temperatures for the tungsten-bearing and tin-bearing granites are ca. 700°C and ca. 800°C, respectively. The model of the mantle–crust interaction exhibits that different percentages of mantle-derived magma were likely involved in the generation of the tin-bearing granites and tungsten-bearing granites. In combination with previous studies, we propose that these granites in Nanling were emplaced in an extensional setting, as a response to the break-off and roll-back of the subducted Palaeo-Pacific Plate during 175–150 Ma.  相似文献   

15.
INTRODUCTION Whatmechanismresultedinthespreadingof SouthChinaSeabasin(SCSB)?Wasitreallypro ducedbytheinteractionofperipheralplatesofthe SCSBorAilaoshan RedRiversinistralfault(Fig.1)? Figure1.AnoutlinetectonicmapofSouthChinablockandIndochinablock(modified…  相似文献   

16.
《International Geology Review》2012,54(12):1522-1549
ABSTRACT

The northern Lesser Xing’an Range in NE China hosts many gold deposits. However, genesis and tectonic background for the mineralization remain unclear. The newly discovered Yongxin gold deposit in this region provides a good example for understanding the related issues. Two economic orebodies have been recognized at Yongxin and they are mainly hosted in the hydrothermal breccias. Zircon U–Pb ages of granite porphyry and diorite porphyry are 119.3 ± 0.7 Ma and 119.9 ± 0.6 Ma, respectively. These data provide constraints to the upper limit of ore-forming age. The δ34S values of pyrite from orebodies range from 2.3‰ to 5.1‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the pyrite are of 18.126–18.255, 15.492–15.537 and 37.880–38.019, respectively. The δ18OH2O and δD values of ore-forming fluids range from ?12.5‰ to 1.8‰ and from ?124.8‰ to ?102.1‰, respectively. The REE compositions of gold-bearing pyrite are similar to those of the volcanic rocks of the Longjiang formation, diorite porphyry and granite porphyry. The combined geological, geochronological and geochemical characteristics of the Yongxin gold deposit indicate that the ore-forming materials were likely sourced from the volcanic rocks of the Longjiang formation, diorite porphyry and granite porphyry, whereas the ore-forming fluids are dominated by meteoric water. The Yongxin gold deposit could be a product of the Early Cretaceous large-scale gold mineralization in northeast China which occurred in an extensional tectonic setting and were related to the rollback of the subducted Paleo-Pacific Oceanic Plate beneath the continental margin of northeast China.  相似文献   

17.
The patterns and history of Mesozoic–Cenozoic plume magmatism in the Arctic is considered in relation with suprasubduction volcanism and geodynamic events. The Mesozoic–Cenozoic magmatic history of the area includes seven stages, distinguished by correlation of ages and compositions of volcanics associated with mid-ocean rifting, plumes, and subduction; three of seven stages correspond to global events at 230–200 Ma, 130–120 Ma, and 40–30 Ma. The reported study supports the inferred inverse correlation between plate velocities and amount of subduction-related volcanism. The gained knowledge is used for paleotectonic reconstructions in the Arctic.  相似文献   

18.
《Gondwana Research》2014,26(4):1445-1468
The continental crust of the North China Craton (NCC) is a major reservoir of mineral resources with imprints of secular changes in tectonics and metallogeny. The Jiaodong Peninsula, located in the eastern margin of the North China Craton (NCC), is currently one of the largest gold producers over the globe, and preserves the records of multiple magmatic and metamorphic events. Here we characterize the timing and tectonics of the major Mesozoic magmatism and the associated gold metallogeny in this region through a comprehensive U–Pb geochronological and Hf isotope investigation of zircons in a suite of granitoids, mafic magmatic enclaves, melanocratic dikes and melted basement rocks.The Linglong granite, hosting one of the major gold deposits in Jiaodong, shows emplacement ages between 150 and 160 Ma, and the dominantly negative εHf (t) values (− 34.0 to − 23.8) of zircons from this intrusion suggest magma derivation from recycled components in the Archean basement. The Guojialing granodiorite and its mafic magmatic enclaves show similar ages between 123 and 127 Ma, with negative εHf (t) values (− 19.3 to − 16.8), corresponding to crustal magma source. The melanocratic dikes, belonging to pre- and syn-mineralization stages, with U–Pb age range of 126 to 166 Ma display large variation in their zircon εHf (t) values (− 25.7 and 2.3) suggesting the involvement of both recycled crustal and juvenile mantle components. Zircons in the melted basement rocks with ages in the range of ca. 127–132 Ma also display both positive and negative εHf (t) values (− 44.6 and 9.8) indicating a mixture of recycled ancient crust and juvenile magmas. Our study shows that although the peak of gold metallogeny coincided with the tectonics associated with Pacific plate subduction which mobilized and concentrated the ores, the source materials of gold mineralization and magmatism had multiple origins including from the Precambrian basement rocks, Mesozoic granitoids and mantle-derived mafic magmas with extensive mixing of crustal, lithosphere mantle and asthenospheric components. A combination of delamination, mantle upwelling, subduction-related metasomatic enrichment and recycling of ancient components facilitated the gold metallogeny in this region. Our study provides a typical case of juvenile and recycled components in the formation and evolution of continental crust and associated mineral resources.  相似文献   

19.
Summary The crystal structure of cesstibtantite has been solved from diffractometer data collected on samples from Leshaia, Russia and the Tanco pegmatite, Manitoba. Cesstibtantite from the Leshaia pegmatite (type locality) hasa 10.515(2) Å, space groupFd3m, composition Cs0.31(Sb0.57Na0.31Pb0.02Bi0.01)O.91(Ta1.88Nb0.12)2(O5.69[OH, F]0.31)6(OH, F)0.69, Z 8; its structure was refined toR 3.8,wR 4.3% using 96 observed (F > 3[F]) reflections (MoK). Cesstibtantite from the Tanco pegmatite hasa 10.496(1) Å, space groupFd3m, composition (Cs0.22K0.01)0.23(Na0.45Sb0.39Pb0.14· Ca0.06Bi0.02)1.06(Ta1.95Nb0.05)2(O5.78[OH,F]0.22)6(OH,F)0.55,Z 8; its structure was refined toR 3.9w R 3.7% using 104 observed reflections. Cesstibtantite differs from the normal pyrochlores in that it contains significant amounts of very large cations such as Cs. As these cations are too large (VIII[r] > 1.60 Å) for the conventional [8]-coordinated A site, they occupy the [18]-coordinated site, which normally contains monovalent anions. Natural cesstibtantite samples are non-ideal in that both Cs and monovalent anions occur at the site; thus cesstibtantite is intermediate to thenormal pyrochlores (with only monovalent anions at the site) and theinverse pyrochlores (with only large cations at the site).
Cesstibtantit—eine geologische Einfiihrung in die inversen Pyrochlore
Zusammenfassung Die Kristallstruktur von Cesstibtantit wurde auf der Basis von Diffraktometerdaten von Proben von Leshaia, Russland and dem Tanco Pegmatit, Manitoba, gelöst. Cesstibtantit aus dem Leshaia Pegmatit (Typlokalität) hat a 10.515(2) Å, RaumgruppeFd3m, die Zusammensetzung CS0.31(Sb0.57Na0.31Pb0.02Bi0.01)0.91(Ta1.88Nb0.12)2· (O5.69OH, F0.31)6(OH, F)0.69 Z 8; die Struktur wurde aufR 3.8,wR 4.3% verfeinert unter Benützung von 96 beobachteten Reflexen. Cesstibtantit vom Tanco Pegmatit hat a 10.496(1) Å, RaumgruppeFd3m, die Zusammensetzung (Cs0.22K0.01)0.23(Na0.45· Sb0.39Pb0.14Ca0.06Bi0.02)1.06(Ta1.95Nb0.05)2(O5.78OH,F0.22)6(OH,F)0.55,Z 8; seine Struktur wurde aufR 3.9wR 3.7% auf der Basis von 104 beobachteten Rettexen verfeinert. Cesstibtantit unterscheidet sich von normalen Pyrochloren insofern, als er signifikante Mengen von sehr großen Kationen, wie z.B. Cs enthält. Da these Kationen zu groß sind (VIII r 1.60 Å) für eine konventionelle [8]-koordinierteA Stelle, nehmen she die [18]-koordinierten Positionen ein, welche normalerweise monovalente Anionen enthalten. Natürliche Cesstibtantitproben sind nicht ideal insofern als sowohl Cs als auch monovalente Anionen in der Position vorkommen. Somit ist Cesstibtantit intermediär zu den normalen Pyrochloren (mit nur monovalenten Anionen auf der Position) and den inversen Pyrochloren (mit ausschließlichen großen Kationen an der Position).
  相似文献   

20.
More than 50 % of the world's total reserves of tungsten are in China and most tungsten deposits are located in the Nanling range in southeast China. This study explores the potential genetic relationship between tungsten–tin (W–Sn) mineralization and shallower Ag–Pb–Zn deposits in the Nanling range based on data from the Wutong deposit, Guangxi Province. The lead, oxygen, carbon, sulfur, and strontium isotopic compositions of minerals at Wutong indicate that a single crustal-derived fluid was responsible for mineralization. Wutong likely formed at relatively low temperatures (~200–300 °C) and low pressures, as indicated by the similarity between homogenization temperatures of fluid inclusions and those estimated from S isotopic compositions of minerals. The hübnerite age (92.3–104.4 Ma) indicates that the Wutong mineralization is likely related to nearby Late Yanshanian (Cretaceous) S-type granites derived from Proterozoic crust. This mineralization event coincides with the last W–Sn mineralization event and the Cretaceous peak of mineralization in the Nanling range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号