首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Over the last years, the ensemble Kalman filter (EnKF) has become a very popular tool for history matching petroleum reservoirs. EnKF is an alternative to more traditional history matching techniques as it is computationally fast and easy to implement. Instead of seeking one best model estimate, EnKF is a Monte Carlo method that represents the solution with an ensemble of state vectors. Lately, several ensemble-based methods have been proposed to improve upon the solution produced by EnKF. In this paper, we compare EnKF with one of the most recently proposed methods, the adaptive Gaussian mixture filter (AGM), on a 2D synthetic reservoir and the Punq-S3 test case. AGM was introduced to loosen up the requirement of a Gaussian prior distribution as implicitly formulated in EnKF. By combining ideas from particle filters with EnKF, AGM extends the low-rank kernel particle Kalman filter. The simulation study shows that while both methods match the historical data well, AGM is better at preserving the geostatistics of the prior distribution. Further, AGM also produces estimated fields that have a higher empirical correlation with the reference field than the corresponding fields obtained with EnKF.  相似文献   

2.
The nonlinear filtering problem occurs in many scientific areas. Sequential Monte Carlo solutions with the correct asymptotic behavior such as particle filters exist, but they are computationally too expensive when working with high-dimensional systems. The ensemble Kalman filter (EnKF) is a more robust method that has shown promising results with a small sample size, but the samples are not guaranteed to come from the true posterior distribution. By approximating the model error with a Gaussian distribution, one may represent the posterior distribution as a sum of Gaussian kernels. The resulting Gaussian mixture filter has the advantage of both a local Kalman type correction and the weighting/resampling step of a particle filter. The Gaussian mixture approximation relies on a bandwidth parameter which often has to be kept quite large in order to avoid a weight collapse in high dimensions. As a result, the Kalman correction is too large to capture highly non-Gaussian posterior distributions. In this paper, we have extended the Gaussian mixture filter (Hoteit et al., Mon Weather Rev 136:317–334, 2008) and also made the connection to particle filters more transparent. In particular, we introduce a tuning parameter for the importance weights. In the last part of the paper, we have performed a simulation experiment with the Lorenz40 model where our method has been compared to the EnKF and a full implementation of a particle filter. The results clearly indicate that the new method has advantages compared to the standard EnKF.  相似文献   

3.
4.
One of the major limitations of the classical ensemble Kalman filter (EnKF) is the assumption of a linear relationship between the state vector and the observed data. Thus, the classical EnKF algorithm can suffer from poor performance when considering highly non-linear and non-Gaussian likelihood models. In this paper, we have formulated the EnKF based on kernel-shrinkage regression techniques. This approach makes it possible to handle highly non-linear likelihood models efficiently. Moreover, a solution to the pre-image problem, essential in previously suggested EnKF schemes based on kernel methods, is not required. Testing the suggested procedure on a simple, illustrative problem with a non-linear likelihood model, we were able to obtain good results when the classical EnKF failed.  相似文献   

5.
We present a method of using classical wavelet-based multiresolution analysis to separate scales in model and observations during data assimilation with the ensemble Kalman filter. In many applications, the underlying physics of a phenomena involve the interaction of features at multiple scales. Blending of observational and model error across scales can result in large forecast inaccuracies since large errors at one scale are interpreted as inexact data at all scales due to the misrepresentation of observational error. Our method uses a partitioning of the range of the observation operator into separate observation scales. This naturally induces a transformation of the observation covariance and we put forward several algorithms to efficiently compute the transformed covariance. Another advantage of our multiresolution ensemble Kalman filter is that scales can be weighted independently to adjust each scale’s affect on the forecast. To demonstrate feasibility, we present applications to a one-dimensional Kuramoto-Sivashinsky (K–S) model with scale-dependent observation noise and an application involving the forecasting of solar photospheric flux. The solar flux application uses the Air Force Data Assimilative Photospheric Transport (ADAPT) model which has model and observation error exhibiting strong scale dependence. Results using our multiresolution ensemble Kalman filter show significant improvement in solar forecast error compared to traditional ensemble Kalman filtering.  相似文献   

6.
The ensemble Kalman filter (EnKF), an efficient data assimilation method showing advantages in many numerical experiments, is deficient when used in approximating covariance from an ensemble of small size. Implicit localization is used to add distance-related weight to covariance and filter spurious correlations which weaken the EnKF??s capability to estimate uncertainty correctly. The effect of this kind of localization is studied in two-dimensional (2D) and three-dimensional (3D) synthetic cases. It is found that EnKF with localization can capture reliably both the mean and variance of the hydraulic conductivity field with higher efficiency; it can also greatly stabilize the assimilation process as a small-size ensemble is used. Sensitivity experiments are conducted to explore the effect of localization function format and filter lengths. It is suggested that too long or too short filter lengths will prevent implicit localization from modifying the covariance appropriately. Steep localization functions will greatly disturb local dynamics like the 0-1 function even if the function is continuous; four relatively gentle localization functions succeed in avoiding obvious disturbance to the system and improve estimation. As the degree of localization of the L function increases, the parameter sensitivity becomes weak, making parameter selection easier, but more information may be lost in the assimilation process.  相似文献   

7.
Hydraulic fracturing involves the initiation and propagation of fractures in rock formations by the injection of pressurized fluid. The largest use of hydraulic fracturing is in enhancing oil and gas production. Tiltmeters are sometimes used in the process to monitor the generated fracture geometry by measuring the fracture‐induced deformations. Fracture growth parameters obtained from tiltmeter mapping can be used to study the effectiveness of such stimulations. In this work, we present a novel scheme that uses the ensemble Kalman Filter (EnKF) to assimilate tiltmeter data using a simple process model to describe the evolution of fracture growth parameters, and an observation model that maps the fracture geometry with the observed tilt. The forward observation model is based on the analytical solution for computing the displacements and tilts due to a point source displacement discontinuity in an elastic half‐space developed by Okada 1 . The displacement and tilts for any given fracture geometry are then obtained by numerical integration of this solution, by considering multiple point sources to be located at the quadrature points. The proposed method is validated using synthetic data sets generated from polygon and elliptical shaped fracture geometries. Finally, real data from a field site, where asymmetry was measured from the intersections of the hydraulic fracture with offset boreholes, have been analyzed. Preliminary results show that, in addition to extracting the fracture dip, orientation, and volume, the procedure is able to satisfactorily predict fracture growth parameters when the fracture is relatively close to the tiltmeter array and provides some insight into the development of asymmetry when the measurements are relatively far from the fracture plane. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
集合卡尔曼滤波(Ensemble Kalman Filter,EnKF)作为一种有效的数据同化方法,在众多数值实验中体现优势的同时,也暴露了它使用小集合估计协方差情况下精度较低的缺陷。为了降低取样噪声对协方差估计的干扰并提高滤波精度,应用局域化函数对小集合估计的协方差进行修正,即在协方差矩阵中以舒尔积的形式增加空间距离权重以限制远距离相关。在一个二维理想孔隙承压含水层模型中的运行结果表明,局域化对集合卡尔曼滤波估计地下水参数的修正十分有效,局域化可以很好地过滤小集合估计中噪声的影响,节省计算量的同时又可以防止滤波发散。相关长度较小的水文地质参数(如对数渗透系数)更容易受到噪声的干扰,更有必要进行局域化修正。  相似文献   

9.
10.
Floods are one of nature's most destructive disasters because of the immense damage to land, buildings, and human fatalities.It is difficult to forecast the areas that are vulnerable to flash flooding due to the dynamic and complex nature of the flash floods.Therefore, earlier identification of flash flood susceptible sites can be performed using advanced machine learning models for managing flood disasters.In this study, we applied and assessed two new hybrid ensemble models, namely Dagging and Random Subspace(RS) coupled with Artificial Neural Network(ANN), Random Forest(RF), and Support Vector Machine(SVM) which are the other three state-of-the-art machine learning models for modelling flood susceptibility maps at the Teesta River basin, the northern region of Bangladesh.The application of these models includes twelve flood influencing factors with 413 current and former flooding points, which were transferred in a GIS environment.The information gain ratio, the multicollinearity diagnostics tests were employed to determine the association between the occurrences and flood influential factors.For the validation and the comparison of these models, for the ability to predict the statistical appraisal measures such as Freidman, Wilcoxon signed-rank, and t-paired tests and Receiver Operating Characteristic Curve(ROC) were employed.The value of the Area Under the Curve(AUC) of ROC was above 0.80 for all models.For flood susceptibility modelling, the Dagging model performs superior, followed by RF,the ANN, the SVM, and the RS, then the several benchmark models.The approach and solution-oriented outcomes outlined in this paper will assist state and local authorities as well as policy makers in reducing flood-related threats and will also assist in the implementation of effective mitigation strategies to mitigate future damage.  相似文献   

11.
There are several issues to consider when we use ensemble smoothers to condition reservoir models on rate data. The values in a time series of rate data contain redundant information that may lead to poorly conditioned inversions and thereby influence the stability of the numerical computation of the update. A time series of rate data typically has correlated measurement errors in time, and negligence of the correlations leads to a too strong impact from conditioning on the rate data and possible ensemble collapse. The total number of rate data included in the smoother update will typically exceed the ensemble size, and special care needs to be taken to ensure numerically stable results. We force the reservoir model with production rate data derived from the observed production, and the further conditioning on the same rate data implies that we use the data twice. This paper discusses strategies for conditioning reservoir models on rate data using ensemble smoothers. In particular, a significant redundancy in the rate data makes it possible to subsample the rate data. The alternative to subsampling is to model the unknown measurement error correlations and specify the full measurement error covariance matrix. We demonstrate the proposed strategies using different ensemble smoothers with the Norne full-field reservoir model.  相似文献   

12.
Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique history matching inverse problem. It has been shown that the ensemble Kalman filter (EnKF) is an adequate method for predicting the dynamics of the reservoir. The EnKF is a sequential Monte-Carlo approach that uses an ensemble of reservoir models. For realistic, large-scale applications, the ensemble size needs to be kept small due to computational inefficiency. Consequently, the error space is not well covered (poor cross-correlation matrix approximations) and the updated parameter field becomes scattered and loses important geological features (for example, the contact between high- and low-permeability values). The prior geological knowledge present in the initial time is not found anymore in the final updated parameter. We propose a new approach to overcome some of the EnKF limitations. This paper shows the specifications and results of the ensemble multiscale filter (EnMSF) for automatic history matching. EnMSF replaces, at each update time, the prior sample covariance with a multiscale tree. The global dependence is preserved via the parent–child relation in the tree (nodes at the adjacent scales). After constructing the tree, the Kalman update is performed. The properties of the EnMSF are presented here with a 2D, two-phase (oil and water) small twin experiment, and the results are compared to the EnKF. The advantages of using EnMSF are localization in space and scale, adaptability to prior information, and efficiency in case many measurements are available. These advantages make the EnMSF a practical tool for many data assimilation problems.  相似文献   

13.
The ensemble Kalman filter (EnKF) has become a popular method for history matching production and seismic data in petroleum reservoir models. However, it is known that EnKF may fail to give acceptable data matches especially for highly nonlinear problems. In this paper, we introduce a procedure to improve EnKF data matches based on assimilating the same data multiple times with the covariance matrix of the measurement errors multiplied by the number of data assimilations. We prove the equivalence between single and multiple data assimilations for the linear-Gaussian case and present computational evidence that multiple data assimilations can improve EnKF estimates for the nonlinear case. The proposed procedure was tested by assimilating time-lapse seismic data in two synthetic reservoir problems, and the results show significant improvements compared to the standard EnKF. In addition, we review the inversion schemes used in the EnKF analysis and present a rescaling procedure to avoid loss of information during the truncation of small singular values.  相似文献   

14.
In this paper, we discuss several possible approaches to improving the performance of the ensemble Kalman filter (EnKF) through improved sampling of the initial ensemble. Each of the approaches addresses a different limitation of the standard method. All methods, however, attempt to make the results from a small ensemble as reliable as possible. The validity and usefulness of each method for creating the initial ensemble is based on three criteria: (1) does the sampling result in unbiased Monte Carlo estimates for nonlinear flow problems, (2) does the sampling reduce the variability of estimates compared to ensembles of realizations from the prior, and (3) does the sampling improve the performance of the EnKF? In general, we conclude that the use of dominant eigenvectors ensures the orthogonality of the generated realizations, but results in biased forecasts of the fractional flow of water. We show that the addition of high frequencies from remaining eigenvectors can be used to remove the bias without affecting the orthogonality of the realizations, but the method did not perform significantly better than standard Monte Carlo sampling. It was possible to identify an appropriate importance weighting to reduce the variance in estimates of the fractional flow of water, but it does not appear to be possible to use the importance weighted realizations in standard EnKF when the data relationship is nonlinear. The biggest improvement came from use of the pseudo-data with corrections to the variance of the actual observations.  相似文献   

15.
Ensemble Kalman filtering with shrinkage regression techniques   总被引:1,自引:0,他引:1  
The classical ensemble Kalman filter (EnKF) is known to underestimate the prediction uncertainty. This can potentially lead to low forecast precision and an ensemble collapsing into a single realisation. In this paper, we present alternative EnKF updating schemes based on shrinkage methods known from multivariate linear regression. These methods reduce the effects caused by collinear ensemble members and have the same computational properties as the fastest EnKF algorithms previously suggested. In addition, the importance of model selection and validation for prediction purposes is investigated, and a model selection scheme based on cross-validation is introduced. The classical EnKF scheme is compared with the suggested procedures on two-toy examples and one synthetic reservoir case study. Significant improvements are seen, both in terms of forecast precision and prediction uncertainty estimates.  相似文献   

16.
In the past years, many applications of history-matching methods in general and ensemble Kalman filter in particular have been proposed, especially in order to estimate fields that provide uncertainty in the stochastic process defined by the dynamical system of hydrocarbon recovery. Such fields can be permeability fields or porosity fields, but can also fields defined by the rock type (facies fields). The estimation of the boundaries of the geologic facies with ensemble Kalman filter (EnKF) was made, in different papers, with the aid of Gaussian random fields, which were truncated using various schemes and introduced in a history-matching process. In this paper, we estimate, in the frame of the EnKF process, the locations of three facies types that occur into a reservoir domain, with the property that each two could have a contact. The geological simulation model is a form of the general truncated plurigaussian method. The difference with other approaches consists in how the truncation scheme is introduced and in the observation operator of the facies types at the well locations. The projection from the continuous space of the Gaussian fields into the discrete space of the facies fields is realized through in an intermediary space (space with probabilities). This space connects the observation operator of the facies types at the well locations with the geological simulation model. We will test the model using a 2D reservoir which is connected with the EnKF method as a data assimilation technique. We will use different geostatistical properties for the Gaussian fields and different levels of the uncertainty introduced in the model parameters and also in the construction of the Gaussian fields.  相似文献   

17.
An iterative ensemble Kalman filter for reservoir engineering applications   总被引:1,自引:0,他引:1  
The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the distribution’s normality. Besides, it is based on the linear update of the analysis equations. These facts may cause problems when filter is used in reservoir applications and result in sampling error. The situation becomes more problematic if the a priori information on the reservoir structure is poor and initial guess about the, e.g., permeability field is far from the actual one. The above circumstance explains a reason to perform some further research concerned with analyzing specific modification of the EnKF-based approach, namely, the iterative EnKF (IEnKF) scheme, which allows restarting the procedure with a new initial guess that is closer to the actual solution and, hence, requires less improvement by the algorithm while providing better estimation of the parameters. The paper presents some examples for which the IEnKF algorithm works better than traditional EnKF. The algorithms are compared while estimating the permeability field in relation to the two-phase, two-dimensional fluid flow model.  相似文献   

18.
In this work, we present an efficient matrix-free ensemble Kalman filter (EnKF) algorithm for the assimilation of large data sets. The EnKF has increasingly become an essential tool for data assimilation of numerical models. It is an attractive assimilation method because it can evolve the model covariance matrix for a non-linear model, through the use of an ensemble of model states, and it is easy to implement for any numerical model. Nevertheless, the computational cost of the EnKF can increase significantly for cases involving the assimilation of large data sets. As more data become available for assimilation, a potential bottleneck in most EnKF algorithms involves the operation of the Kalman gain matrix. To reduce the complexity and cost of assimilating large data sets, a matrix-free EnKF algorithm is proposed. The algorithm uses an efficient matrix-free linear solver, based on the Sherman–Morrison formulas, to solve the implicit linear system within the Kalman gain matrix and compute the analysis. Numerical experiments with a two-dimensional shallow water model on the sphere are presented, where results show the matrix-free implementation outperforming an singular value decomposition-based implementation in computational time.  相似文献   

19.
Covariance localisation is used in many implementations of the ensemble Kalman filter (EnKF) but has been shown by Lorenc and by Kepert to significantly degrade the main balances in the atmosphere and ocean. Kepert recently introduced an improved form of localisation that reduced or eliminated this problem. This paper presents an extension to that approach, in which the background state is decomposed into balanced and unbalanced parts as part of the localisation. This new balance-aware localisation is shown to be a slight improvement on the earlier work of Kepert and a substantial improvement on the standard Schur-product localisation. Balance-aware localisation also enables the use of some sets of alternative analysis variables that do not work well with conventional localisation in the EnKF. It is shown using identical-twin experiments with a global spectral shallow-water model and no separate initialisation step that analysis to geopotential, streamfunction and velocity potential is slightly more accurate than is analysis to geopotential and the wind components. Analysis to unbalanced (instead of total) geopotential, streamfunction and velocity potential leads to slightly less accurate but significantly better balanced analyses than the other choices of analysis variables. If nonlinear normal modes initialisation is incorporated in the analysis cycling, then the conventional localisation becomes the most accurate method. However, initialisation may be undesirable or unavailable, and the comparison of system performance without localisation is useful since it helps improve understanding of the balance issues in EnKF-based assimilation systems.  相似文献   

20.
多金属结核类型成因分类是海底矿产资源关注的重要地质问题,诸多学者一直探索利用多金属结核地球化学特征进行多金属结核成因判别。近年来,随着大数据分析方法的应用,为探索利用机器学习技术进行多金属结核地球化学特征进行成因分类提供了很好的思路和方法。本文基于多年调查研究获取的太平洋多金属结核地球化学数据,利用高斯混合模型聚类分析技术,实现了太平洋深海盆地多金属结核成因分类,并对水成型结核进行了进一步判别分析,共划分出成岩型、混合型、水成Ⅰ型和水成Ⅱ型四类成因多金属结核,为太平洋深海找矿突破和资源评价提供重要依据。同时,不同成因类型结核空间预测结果显示,西北太平洋海域是水成Ⅰ型富钴多金属结核的主要分布区域之一,主要分布在马尔库斯—威克海山群、麦哲伦海山群北部、马绍尔海山群和中太平洋海山群西南部的山间盆地,以及附近的皮嘉费他海盆和中太平洋海盆西北部,是未来西太平洋富钴多金属结核资源找矿突破需要关注的关键海域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号