首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An iterative ensemble Kalman filter for reservoir engineering applications   总被引:1,自引:0,他引:1  
The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the distribution’s normality. Besides, it is based on the linear update of the analysis equations. These facts may cause problems when filter is used in reservoir applications and result in sampling error. The situation becomes more problematic if the a priori information on the reservoir structure is poor and initial guess about the, e.g., permeability field is far from the actual one. The above circumstance explains a reason to perform some further research concerned with analyzing specific modification of the EnKF-based approach, namely, the iterative EnKF (IEnKF) scheme, which allows restarting the procedure with a new initial guess that is closer to the actual solution and, hence, requires less improvement by the algorithm while providing better estimation of the parameters. The paper presents some examples for which the IEnKF algorithm works better than traditional EnKF. The algorithms are compared while estimating the permeability field in relation to the two-phase, two-dimensional fluid flow model.  相似文献   

2.
The ensemble Kalman filter (EnKF), an efficient data assimilation method showing advantages in many numerical experiments, is deficient when used in approximating covariance from an ensemble of small size. Implicit localization is used to add distance-related weight to covariance and filter spurious correlations which weaken the EnKF??s capability to estimate uncertainty correctly. The effect of this kind of localization is studied in two-dimensional (2D) and three-dimensional (3D) synthetic cases. It is found that EnKF with localization can capture reliably both the mean and variance of the hydraulic conductivity field with higher efficiency; it can also greatly stabilize the assimilation process as a small-size ensemble is used. Sensitivity experiments are conducted to explore the effect of localization function format and filter lengths. It is suggested that too long or too short filter lengths will prevent implicit localization from modifying the covariance appropriately. Steep localization functions will greatly disturb local dynamics like the 0-1 function even if the function is continuous; four relatively gentle localization functions succeed in avoiding obvious disturbance to the system and improve estimation. As the degree of localization of the L function increases, the parameter sensitivity becomes weak, making parameter selection easier, but more information may be lost in the assimilation process.  相似文献   

3.
Over the last years, the ensemble Kalman filter (EnKF) has become a very popular tool for history matching petroleum reservoirs. EnKF is an alternative to more traditional history matching techniques as it is computationally fast and easy to implement. Instead of seeking one best model estimate, EnKF is a Monte Carlo method that represents the solution with an ensemble of state vectors. Lately, several ensemble-based methods have been proposed to improve upon the solution produced by EnKF. In this paper, we compare EnKF with one of the most recently proposed methods, the adaptive Gaussian mixture filter (AGM), on a 2D synthetic reservoir and the Punq-S3 test case. AGM was introduced to loosen up the requirement of a Gaussian prior distribution as implicitly formulated in EnKF. By combining ideas from particle filters with EnKF, AGM extends the low-rank kernel particle Kalman filter. The simulation study shows that while both methods match the historical data well, AGM is better at preserving the geostatistics of the prior distribution. Further, AGM also produces estimated fields that have a higher empirical correlation with the reference field than the corresponding fields obtained with EnKF.  相似文献   

4.
The ensemble Kalman filter (EnKF) appears to give good results for matching production data at existing wells. However, the predictive power of these models outside of the existing wells is much more uncertain. In this paper, for a channelized reservoir for five different cases with different levels of information the production history is matched using the EnKF. The predictive power of the resulting model is tested for the existing wells and for new wells. The results show a consistent improvement for the predictions at the existing wells after assimilation of the production data, but not for prediction of production at new well locations. The latter depended on the settings of the problem and prior information used. The results also showed that the fit during the history match was not always a good predictor for predictive capabilities of the history match model. This suggests that some form of validation outside of observed wells is essential.  相似文献   

5.
In this paper, we discuss several possible approaches to improving the performance of the ensemble Kalman filter (EnKF) through improved sampling of the initial ensemble. Each of the approaches addresses a different limitation of the standard method. All methods, however, attempt to make the results from a small ensemble as reliable as possible. The validity and usefulness of each method for creating the initial ensemble is based on three criteria: (1) does the sampling result in unbiased Monte Carlo estimates for nonlinear flow problems, (2) does the sampling reduce the variability of estimates compared to ensembles of realizations from the prior, and (3) does the sampling improve the performance of the EnKF? In general, we conclude that the use of dominant eigenvectors ensures the orthogonality of the generated realizations, but results in biased forecasts of the fractional flow of water. We show that the addition of high frequencies from remaining eigenvectors can be used to remove the bias without affecting the orthogonality of the realizations, but the method did not perform significantly better than standard Monte Carlo sampling. It was possible to identify an appropriate importance weighting to reduce the variance in estimates of the fractional flow of water, but it does not appear to be possible to use the importance weighted realizations in standard EnKF when the data relationship is nonlinear. The biggest improvement came from use of the pseudo-data with corrections to the variance of the actual observations.  相似文献   

6.
Covariance localisation is used in many implementations of the ensemble Kalman filter (EnKF) but has been shown by Lorenc and by Kepert to significantly degrade the main balances in the atmosphere and ocean. Kepert recently introduced an improved form of localisation that reduced or eliminated this problem. This paper presents an extension to that approach, in which the background state is decomposed into balanced and unbalanced parts as part of the localisation. This new balance-aware localisation is shown to be a slight improvement on the earlier work of Kepert and a substantial improvement on the standard Schur-product localisation. Balance-aware localisation also enables the use of some sets of alternative analysis variables that do not work well with conventional localisation in the EnKF. It is shown using identical-twin experiments with a global spectral shallow-water model and no separate initialisation step that analysis to geopotential, streamfunction and velocity potential is slightly more accurate than is analysis to geopotential and the wind components. Analysis to unbalanced (instead of total) geopotential, streamfunction and velocity potential leads to slightly less accurate but significantly better balanced analyses than the other choices of analysis variables. If nonlinear normal modes initialisation is incorporated in the analysis cycling, then the conventional localisation becomes the most accurate method. However, initialisation may be undesirable or unavailable, and the comparison of system performance without localisation is useful since it helps improve understanding of the balance issues in EnKF-based assimilation systems.  相似文献   

7.
In this work, we present an efficient matrix-free ensemble Kalman filter (EnKF) algorithm for the assimilation of large data sets. The EnKF has increasingly become an essential tool for data assimilation of numerical models. It is an attractive assimilation method because it can evolve the model covariance matrix for a non-linear model, through the use of an ensemble of model states, and it is easy to implement for any numerical model. Nevertheless, the computational cost of the EnKF can increase significantly for cases involving the assimilation of large data sets. As more data become available for assimilation, a potential bottleneck in most EnKF algorithms involves the operation of the Kalman gain matrix. To reduce the complexity and cost of assimilating large data sets, a matrix-free EnKF algorithm is proposed. The algorithm uses an efficient matrix-free linear solver, based on the Sherman–Morrison formulas, to solve the implicit linear system within the Kalman gain matrix and compute the analysis. Numerical experiments with a two-dimensional shallow water model on the sphere are presented, where results show the matrix-free implementation outperforming an singular value decomposition-based implementation in computational time.  相似文献   

8.
In recent years, data assimilation techniques have been applied to an increasingly wider specter of problems. Monte Carlo variants of the Kalman filter, in particular, the ensemble Kalman filter (EnKF), have gained significant popularity. EnKF is used for a wide variety of applications, among them for updating reservoir simulation models. EnKF is a Monte Carlo method, and its reliability depends on the actual size of the sample. In applications, a moderately sized sample (40–100 members) is used for computational convenience. Problems due to the resulting Monte Carlo effects require a more thorough analysis of the EnKF. Earlier we presented a method for the assessment of the error emerging at the EnKF update step (Kovalenko et al., SIAM J Matrix Anal Appl, in press). A particular energy norm of the EnKF error after a single update step was studied. The energy norm used to assess the error is hard to interpret. In this paper, we derive the distribution of the Euclidean norm of the sampling error under the same assumptions as before, namely normality of the forecast distribution and negligibility of the observation error. The distribution depends on the ensemble size, the number and spatial arrangement of the observations, and the prior covariance. The distribution is used to study the error propagation in a single update step on several synthetic examples. The examples illustrate the changes in reliability of the EnKF, when the parameters governing the error distribution vary.  相似文献   

9.
Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique history matching inverse problem. It has been shown that the ensemble Kalman filter (EnKF) is an adequate method for predicting the dynamics of the reservoir. The EnKF is a sequential Monte-Carlo approach that uses an ensemble of reservoir models. For realistic, large-scale applications, the ensemble size needs to be kept small due to computational inefficiency. Consequently, the error space is not well covered (poor cross-correlation matrix approximations) and the updated parameter field becomes scattered and loses important geological features (for example, the contact between high- and low-permeability values). The prior geological knowledge present in the initial time is not found anymore in the final updated parameter. We propose a new approach to overcome some of the EnKF limitations. This paper shows the specifications and results of the ensemble multiscale filter (EnMSF) for automatic history matching. EnMSF replaces, at each update time, the prior sample covariance with a multiscale tree. The global dependence is preserved via the parent–child relation in the tree (nodes at the adjacent scales). After constructing the tree, the Kalman update is performed. The properties of the EnMSF are presented here with a 2D, two-phase (oil and water) small twin experiment, and the results are compared to the EnKF. The advantages of using EnMSF are localization in space and scale, adaptability to prior information, and efficiency in case many measurements are available. These advantages make the EnMSF a practical tool for many data assimilation problems.  相似文献   

10.
11.
We present a method of using classical wavelet-based multiresolution analysis to separate scales in model and observations during data assimilation with the ensemble Kalman filter. In many applications, the underlying physics of a phenomena involve the interaction of features at multiple scales. Blending of observational and model error across scales can result in large forecast inaccuracies since large errors at one scale are interpreted as inexact data at all scales due to the misrepresentation of observational error. Our method uses a partitioning of the range of the observation operator into separate observation scales. This naturally induces a transformation of the observation covariance and we put forward several algorithms to efficiently compute the transformed covariance. Another advantage of our multiresolution ensemble Kalman filter is that scales can be weighted independently to adjust each scale’s affect on the forecast. To demonstrate feasibility, we present applications to a one-dimensional Kuramoto-Sivashinsky (K–S) model with scale-dependent observation noise and an application involving the forecasting of solar photospheric flux. The solar flux application uses the Air Force Data Assimilative Photospheric Transport (ADAPT) model which has model and observation error exhibiting strong scale dependence. Results using our multiresolution ensemble Kalman filter show significant improvement in solar forecast error compared to traditional ensemble Kalman filtering.  相似文献   

12.
赖锡军 《水科学进展》2009,20(2):241-248
为减少非恒定水流计算中的不确定性,在水流随机运动系统状态空间模型基础上,应用集合卡尔曼滤波(EnKF)技术建立了非恒定水流分析的实时更新(校正)方法。该方法适用于非线性的随机微分方程,过程和观测噪声可以是非正态分布。同时,为充分利用水位、流量等误差量级相差巨大的观测中所蕴含的有效信息,导出了EnKF多变量分析格式。以明渠单峰洪水过程的合成数据为例,考察了运用建立的实时更新方法分析预报一维洪水演进的性能。重点对比了采用不同精度等级下的水位和流量观测资料进行滤波的效果。在中国现行标准规定的允许观测误差范围内,以水位观测进行一维洪水动力学模型的滤波分析可有效地控制误差、估计流量、识别水流运动系统状态。长江干流清溪场至万县江段实际洪水计算还证实:该方法通过插入即时观测,可实时更新模型状态,给出与实际更为接近的计算。  相似文献   

13.
The nonlinear filtering problem occurs in many scientific areas. Sequential Monte Carlo solutions with the correct asymptotic behavior such as particle filters exist, but they are computationally too expensive when working with high-dimensional systems. The ensemble Kalman filter (EnKF) is a more robust method that has shown promising results with a small sample size, but the samples are not guaranteed to come from the true posterior distribution. By approximating the model error with a Gaussian distribution, one may represent the posterior distribution as a sum of Gaussian kernels. The resulting Gaussian mixture filter has the advantage of both a local Kalman type correction and the weighting/resampling step of a particle filter. The Gaussian mixture approximation relies on a bandwidth parameter which often has to be kept quite large in order to avoid a weight collapse in high dimensions. As a result, the Kalman correction is too large to capture highly non-Gaussian posterior distributions. In this paper, we have extended the Gaussian mixture filter (Hoteit et al., Mon Weather Rev 136:317–334, 2008) and also made the connection to particle filters more transparent. In particular, we introduce a tuning parameter for the importance weights. In the last part of the paper, we have performed a simulation experiment with the Lorenz40 model where our method has been compared to the EnKF and a full implementation of a particle filter. The results clearly indicate that the new method has advantages compared to the standard EnKF.  相似文献   

14.
集合卡尔曼滤波(Ensemble Kalman Filter,EnKF)作为一种有效的数据同化方法,在众多数值实验中体现优势的同时,也暴露了它使用小集合估计协方差情况下精度较低的缺陷。为了降低取样噪声对协方差估计的干扰并提高滤波精度,应用局域化函数对小集合估计的协方差进行修正,即在协方差矩阵中以舒尔积的形式增加空间距离权重以限制远距离相关。在一个二维理想孔隙承压含水层模型中的运行结果表明,局域化对集合卡尔曼滤波估计地下水参数的修正十分有效,局域化可以很好地过滤小集合估计中噪声的影响,节省计算量的同时又可以防止滤波发散。相关长度较小的水文地质参数(如对数渗透系数)更容易受到噪声的干扰,更有必要进行局域化修正。  相似文献   

15.
Reservoir simulation models are used both in the development of new fields and in developed fields where production forecasts are needed for investment decisions. When simulating a reservoir, one must account for the physical and chemical processes taking place in the subsurface. Rock and fluid properties are crucial when describing the flow in porous media. In this paper, the authors are concerned with estimating the permeability field of a reservoir. The problem of estimating model parameters such as permeability is often referred to as a history-matching problem in reservoir engineering. Currently, one of the most widely used methodologies which address the history-matching problem is the ensemble Kalman filter (EnKF). EnKF is a Monte Carlo implementation of the Bayesian update problem. Nevertheless, the EnKF methodology has certain limitations that encourage the search for an alternative method.For this reason, a new approach based on graphical models is proposed and studied. In particular, the graphical model chosen for this purpose is a dynamic non-parametric Bayesian network (NPBN). This is the first attempt to approach a history-matching problem in reservoir simulation using a NPBN-based method. A two-phase, two-dimensional flow model was implemented for a synthetic reservoir simulation exercise, and initial results are shown. The methods’ performances are evaluated and compared. This paper features a completely novel approach to history matching and constitutes only the first part (part I) of a more detailed investigation. For these reasons (novelty and incompleteness), many questions are left open and a number of recommendations are formulated, to be investigated in part II of the same paper.  相似文献   

16.
Hydraulic fracturing involves the initiation and propagation of fractures in rock formations by the injection of pressurized fluid. The largest use of hydraulic fracturing is in enhancing oil and gas production. Tiltmeters are sometimes used in the process to monitor the generated fracture geometry by measuring the fracture‐induced deformations. Fracture growth parameters obtained from tiltmeter mapping can be used to study the effectiveness of such stimulations. In this work, we present a novel scheme that uses the ensemble Kalman Filter (EnKF) to assimilate tiltmeter data using a simple process model to describe the evolution of fracture growth parameters, and an observation model that maps the fracture geometry with the observed tilt. The forward observation model is based on the analytical solution for computing the displacements and tilts due to a point source displacement discontinuity in an elastic half‐space developed by Okada 1 . The displacement and tilts for any given fracture geometry are then obtained by numerical integration of this solution, by considering multiple point sources to be located at the quadrature points. The proposed method is validated using synthetic data sets generated from polygon and elliptical shaped fracture geometries. Finally, real data from a field site, where asymmetry was measured from the intersections of the hydraulic fracture with offset boreholes, have been analyzed. Preliminary results show that, in addition to extracting the fracture dip, orientation, and volume, the procedure is able to satisfactorily predict fracture growth parameters when the fracture is relatively close to the tiltmeter array and provides some insight into the development of asymmetry when the measurements are relatively far from the fracture plane. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Ensemble methods present a practical framework for parameter estimation, performance prediction, and uncertainty quantification in subsurface flow and transport modeling. In particular, the ensemble Kalman filter (EnKF) has received significant attention for its promising performance in calibrating heterogeneous subsurface flow models. Since an ensemble of model realizations is used to compute the statistical moments needed to perform the EnKF updates, large ensemble sizes are needed to provide accurate updates and uncertainty assessment. However, for realistic problems that involve large-scale models with computationally demanding flow simulation runs, the EnKF implementation is limited to small-sized ensembles. As a result, spurious numerical correlations can develop and lead to inaccurate EnKF updates, which tend to underestimate or even eliminate the ensemble spread. Ad hoc practical remedies, such as localization, local analysis, and covariance inflation schemes, have been developed and applied to reduce the effect of sampling errors due to small ensemble sizes. In this paper, a fast linear approximate forecast method is proposed as an alternative approach to enable the use of large ensemble sizes in operational settings to obtain more improved sample statistics and EnKF updates. The proposed method first clusters a large number of initial geologic model realizations into a small number of groups. A representative member from each group is used to run a full forward flow simulation. The flow predictions for the remaining realizations in each group are approximated by a linearization around the full simulation results of the representative model (centroid) of the respective cluster. The linearization can be performed using either adjoint-based or ensemble-based gradients. Results from several numerical experiments with two-phase and three-phase flow systems in this paper suggest that the proposed method can be applied to improve the EnKF performance in large-scale problems where the number of full simulation is constrained.  相似文献   

18.
19.
In the past years, many applications of history-matching methods in general and ensemble Kalman filter in particular have been proposed, especially in order to estimate fields that provide uncertainty in the stochastic process defined by the dynamical system of hydrocarbon recovery. Such fields can be permeability fields or porosity fields, but can also fields defined by the rock type (facies fields). The estimation of the boundaries of the geologic facies with ensemble Kalman filter (EnKF) was made, in different papers, with the aid of Gaussian random fields, which were truncated using various schemes and introduced in a history-matching process. In this paper, we estimate, in the frame of the EnKF process, the locations of three facies types that occur into a reservoir domain, with the property that each two could have a contact. The geological simulation model is a form of the general truncated plurigaussian method. The difference with other approaches consists in how the truncation scheme is introduced and in the observation operator of the facies types at the well locations. The projection from the continuous space of the Gaussian fields into the discrete space of the facies fields is realized through in an intermediary space (space with probabilities). This space connects the observation operator of the facies types at the well locations with the geological simulation model. We will test the model using a 2D reservoir which is connected with the EnKF method as a data assimilation technique. We will use different geostatistical properties for the Gaussian fields and different levels of the uncertainty introduced in the model parameters and also in the construction of the Gaussian fields.  相似文献   

20.
The ensemble Kalman filter (EnKF) has become a popular method for history matching production and seismic data in petroleum reservoir models. However, it is known that EnKF may fail to give acceptable data matches especially for highly nonlinear problems. In this paper, we introduce a procedure to improve EnKF data matches based on assimilating the same data multiple times with the covariance matrix of the measurement errors multiplied by the number of data assimilations. We prove the equivalence between single and multiple data assimilations for the linear-Gaussian case and present computational evidence that multiple data assimilations can improve EnKF estimates for the nonlinear case. The proposed procedure was tested by assimilating time-lapse seismic data in two synthetic reservoir problems, and the results show significant improvements compared to the standard EnKF. In addition, we review the inversion schemes used in the EnKF analysis and present a rescaling procedure to avoid loss of information during the truncation of small singular values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号