首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Solutions are presented for the behaviour of layered soil or rock deposits which contain a heat source. Such a problem arises when high level nuclear waste is placed in deep underground depositaries, as the waste continues to generate heat for many years after placement. This heating of the surrounding soil or rock may lead to expansion and cracking with subsequent contamination of ground water. Results are presented for heat soureces with different decay rates and for heat sources in layers of material with different coefficients of expansion. An example using realistic data for rock is also given. The solution method involves applying Fourier or Hankel transforms to the field quantities and this reduces the two-dimensional or axisymmetric problem to one involving a single spatial dimension. In cases where the soil or rock is horizontally layered, the method has great advantages over other numerical methods such as finite element or finite difference techniques, since little computer storage and data preparation time is required. Solution of the time-dependent problem is carried out by applying Laplace transforms to the field variables, obtaining solutions and then using numerical means to invert the transformed solutions. This enables easy solution of problems involving time-dependent (i.e. decaying) heat sources.  相似文献   

2.
Solutions are presented for the behaviour of a layered porous space which contains a decaying heat source. Such a problem arises when high-level nuclear waste is placed in deep underground depositories in deep clayey formations of sedimentary basins. The geometry of the problem is one dimensional and the porous space is constituted by two layers: a deep low permeability layer which contains the nuclear waste disposal and a superficial layer. The solution is used to examine the effects of contrasts of permeability, thermal conductivity and specific heat capacities between the two layers on the large-scale behaviour of the porous space. Results are presented, using realistic data, for the pore pressure and temperature evolution at the heat source centre, and for the vertical displacement of the ground level. The superficial layer has no significant effects on pore pressure, temperature and stress evolution near the heat source centre. The vertical displacement of the ground level is mainly due to the thermal dilatation of the pore water, so it decreases with an increasing of permeability of the superficial layer. The solution of the time-dependent problem is carried out by applying Laplace transforms to the field variables, obtaining solutions and then using numerical methods to invert the transformed solutions. Comparisons with numerical simulations taking into account the non-linear and non-reversible behaviour of the rock mass are presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
A general solution scheme is developed for one-dimensional and non-isothermal consolidation problems for fluid-saturated, porous, thermoelastic media. Two fundamental parameters which describe the coupling effects between thermal, hydraulic and mechanical behaviour are: ratio of thermal and hydraulic diffusivity and ratio of thermomechanical deformabilities in drained and undrained conditions. The solution scheme has been applied to the nuclear waste disposal problem. A solution for a thermoporoelastic rock mass containing a decaying heat source is presented. Numerical results show that coupling effects are most pronounced for low permeability and high porosity media such as deep compressible clays. This corresponds to a low value of the ratio of hydraulic and thermal diffusivities and a high value of the ratio of deformabilities in drained and undrained conditions. Comparison with numerical simulations taking into account the non-linear and non-reversible behaviour of the rock mass is presented. It shows that the thermoelastic model is quite correct for temperature and displacement fields, and gives maxima of the pore pressure and stress elevations.  相似文献   

4.
张勇  项彦勇 《岩土力学》2013,34(3):685-695
针对高放射性核废物地下处置库近场饱和裂隙岩体环境,提出一种由分布热源、饱和单裂隙和两侧无限大岩石构成的三维水流-传热简化模型,建立了控制微分方程和基于拉氏变换域格林函数的积分方程;采用矩形单元把裂隙面域离散化,利用极坐标下的解析方法计算包含奇点的单元积分,利用数值方法计算分布热源和不包含奇点的单元积分,建立拉氏变换域的线性代数方程组,求解后,利用拉氏数值逆变换,计算任意时刻裂隙水和岩石的温度分布。对两个无内热源、流场确定的计算模型进行了计算,与仅考虑岩石沿裂隙面法向一维热传导的解析解进行了对比。计算分析了分布热源作用下饱和单裂隙岩体的三维水流-传热特征及其对裂隙水流速、岩石热传导系数和热源热流集度的敏感度。计算结果表明:与直接采用高斯数值积分相比,提出的解析法奇异积分精度较高;就裂隙水温度而言,单裂隙岩体三维水流-传热半解析计算方法与解析法得到的结果基本一致,但由于半解析计算方法考虑了岩石的三维热传导,使得裂隙水的上游温度较低,而下游温度较高;无分布热源作用时,岩石热传导系数越大,裂隙水温度越低;裂隙水流速越大,裂隙进水温度对裂隙水和岩石温度分布的影响越明显;由于受到裂隙水流动传热的作用,分布热源对裂隙水温度和岩石温度的影响在裂隙水流的下游区域比较显著。  相似文献   

5.
An analytical investigation of a half‐space containing transversely isotropic material under forced vertical and horizontal displacements applied on a rectangular rigid foundation is presented in this paper. With the goal of a rigorous solution to the shape‐ and rigidity‐ induced singular mixed boundary value problem, the formulation employs scalar potential representation, the Fourier expansion and the Hankel integral transforms method to obtain the surface arbitrary point‐load solution in cylindrical coordinate system. The obtained Green's functions are rewritten in rectangular coordinate system, allowing the response of the half‐space because of an arbitrary distributed load on a rectangular surface area be given in terms of a double integral. The numerical evaluations of stresses are done with the use of an element, which is singular at the edge and the corner of the rectangle. Upon the imposition of the rigidity displacement boundary condition for a rigid foundation and the use of a set of two‐dimensional adaptive‐gradient elements, which can capture the singular behavior in the contact stress effectively, a set of new numerical results are presented to illustrate the effect of transverse isotropy on the foundation response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
在第一类Dirichlet边界条件下,研究了由表面热流密度来反演热传导方程多点源的唯一性和稳定性。即反演点源个数n、热源强度组合系数αi、点源位置si的唯一性和反演点源位置si的稳定性。利用热变换方法将热传导方程反问题转化为等价的双曲型方程反问题,然后通过分析等价的双曲型方程反问题得到原反问题的唯一性和条件稳定性结论。  相似文献   

7.
This paper presents an analytical layer element solution to axisymmetric thermal consolidation of multilayered porous thermoelastic media containing a deep buried heat source. By applying the Laplace–Hankel transform to the state variables involved in the basic governing equations of porous thermoelasticity, the analytical layer elements that describe the relationship between the transformed generalized stresses and displacements of a finite layer and a half‐space are derived. The global stiffness matrix equation is obtained by assembling the interrelated layer elements, and the real solutions in the physical domain are achieved by numerical inversion of the Laplace–Hankel transform after obtaining the solutions in the transformed domain. Finally, numerical calculations are performed to demonstrate the accuracy of this method and to investigate the influence of heat source's types, layering, and the porous thermoelastic material parameters on thermal consolidation behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
基于二次插值的线源可控源有限元数值模拟   总被引:3,自引:0,他引:3  
在准静态近似条件下,采用矩形网格单元和双二次函数插值就频率域二维线源边值问题进行了有限元数值模拟。在二维地电条件下,给出了边值问题和变分问题,并通过有限单元法对模型进行单元剖分、插值、积分和整体合成,最后通过求解复系数方程组得到了地表视电阻率响应。引入伪delta函数模拟线源,消弱了源带来的奇异性。通过与均匀大地以及层状介质模型的解析解对比,平均相对误差分别为0.71%和1.12%。建立了两个异常体模型,数值模拟表明异常响应比较明显,为进一步实现三维可控源电磁法有限元数值模拟提供了基础。  相似文献   

9.
The construction of quasirectangular tunnels at shallow depths is becoming increasingly common in urban areas to efficiently utilize underground space and reduce the need for backfilling. To clarify the mechanical mechanism of the stresses and displacements around the tunnels, this study proposes analytical solutions that precisely account for quasirectangular tunnel shapes, the ground surface, the tunnel depth, and the ground's elastic/viscoelastic properties. The Schwarz alternating method combined with complex variable theory is employed to derive the elastic solution, and convergent and highly accurate solutions are obtained by superposing the solutions in the alternating iterations. Based on the solution and the extended corresponding principle for the viscoelastic problem, the time-dependent analytical solutions for the displacement are obtained for the ground assuming any viscoelastic model. The analytical solutions agree well with the finite element method (FEM) numerical results for models that are completely consistent, and qualitatively agree with field data. Furthermore, based on the stress solution combined with the Mohr-Coulomb failure criterion, the predicted initial plastic zone and propagation directions around the tunnels are qualitatively consistent with those determined by the limit analysis. A parametric study is performed to investigate the influences of the rectangular/quasirectangular tunnel shape, burial depth, and supporting pressure on the ground stresses and displacements.  相似文献   

10.
Based on the governing equations of the thermo-elastic problem, the analytical layer-elements of a finite layer and an underlying half-space are obtained using the Laplace-Hankel transform and the characteristic value method. The cylindrical heat source is divided into several micro cylindrical heat sources, which can be approximately simulated by plane heat sources. Then, the global stiffness matrix for the problem is assembled and solved in the transformed domain, and a Laplace-Hankel transform inversion is taken to obtain the real solution. Finally, the influence of heat source types, division numbers, embedded depths and layered properties on the thermo-mechanical coupling response is investigated.  相似文献   

11.
12.
A solution is derived for the heat flow and consolidation which occur when a heat source is buried deep in a porous thermoelastic soil having anisotropic flow properties. This solution is used to examine the pore pressure generation and dissipation near both point and cylindrical heat sources. An increase in temperature will tend to generate an increase in excess pore pressure. However, the pore water will tend to flow from regions of high excess pore pressure to regions of low excess pore pressure, and so consolidation will occur, and temperature-generated excess pore pressures will tend to dissipate. Many natural soils exhibit horizontal layering and so have a higher horizontal than vertical permeability. It is shown that in soils the excess pore pressure generated by a heat source is significantly less than that in an isotropic soil having an equal vertical permeability.  相似文献   

13.
项彦勇  郭家奇 《岩土力学》2011,32(2):333-340
以裂隙岩体高放射性核废物地下处置库性能评估为目标,提出了分布热源作用下单裂隙岩体渗流-传热的简化概念模型、控制微分方程和拉氏变换-格林函数半解析法,为进一步采用半解析法计算分布热源作用下多裂隙岩体的渗流-传热问题奠定了基础。针对单裂隙岩体的渗流-传热问题,建立考虑岩石内热源和二维热传导的控制微分方程,利用拉氏变换域微分方程的基本解建立格林函数积分方程,采用解析法处理其中的奇点,通过数值积分和拉氏数值逆变换求解,计算任意时刻裂隙水和岩石的温度分布。通过算例,与基于岩石一维热传导假定的解析解进行了对比,并计算分析了分布热源作用下单裂隙岩体的渗流-传热特征及其对裂隙开度、岩石热传导系数和热流集度的敏感度。算例表明,(1)就裂隙水温度而言,由于考虑了岩石的二维热传导,拉氏变换-格林函数半解析解小于基于岩石一维热传导假定的解析解;(2)裂隙水温度和岩石温度对裂隙开度和热流集度的敏感度较大,对岩石热传导系数的敏感度较小。  相似文献   

14.
15.
In this paper the effect of transient uplift/erosion on the relationship between surface heat flow and heat generation for truncated exponential model of radiogenic heat source distribution and basal asthenospheric convection is investigated. Asthenospheric convection is described by a parameterized model, in the form of a nonlinear heat flux boundary condition involving basal temperature and mantle internal temperature. This boundary condition has been linearized and the analytical solution of the problem is obtained by the eigenvalue-eigenfunction expansion method. The analytical solution is used to derive the nature of surface heat flow and heat generation relationship. The results show that the linear relationship is maintained during the uplift/erosion and the estimates of the slope of the linear relationship are different from the depth scale of the exponential model and increase with the rate of uplift/erosion. The estimates of the reduced heat flow also increase with the rate of uplift/erosion. These results would find applications in the interpretation of linear surface heat flow and heat generation relationship which is observed in different tectonic environment.  相似文献   

16.
卢正  姚海林  刘干斌  骆行文 《岩土力学》2010,31(7):2309-2316
基于Biot波动理论和广义热弹性理论,对简谐线源荷载(力荷载和热荷载)作用下的热-流-固耦合地基的动力响应问题进行了研究。将地基看成是均质各向同性、完全饱和的多孔半空间介质,利用无量纲化和Fourier变换方法对热-流-固耦合控制方程进行简化,得到了变换域内应力分量、位移分量、温度分布及超孔隙水压力的一般解,并利用Fourier逆变换得到了相应的积分形式解答。通过数值计算对按热-流-固耦合理论、饱和多孔弹性理论和热弹性理论得到的结果进行了比较,同时分析了热-流-固耦合条件下热荷载激振频率对竖向应力、竖向位移、温度分布以及超孔隙水压力的影响。  相似文献   

17.
陈星欣  白冰  蔡奇鹏 《岩土力学》2015,36(6):1698-1706
建立考虑吸附-解吸效应的颗粒加速迁移问题控制方程,通过Laplace变换和Fourier变换求出颗粒瞬时和周期性注入情况下点源和面源问题的解析解。同时,开展点源瞬时注入方式下颗粒迁移试验,并将试验和理论计算结果进行对比分析,两者较为吻合,从而验证了解析解的正确性。点源瞬时注入方式下颗粒迁移参数的分析进一步表明:吸附系数越大,颗粒的浓度峰值越小。解吸系数对浓度峰值左侧曲线影响较小,而对浓度峰值右侧曲线来说,解吸系数不仅影响颗粒浓度,也影响颗粒迁移时间;浓度等值线在x-y平面上的形状近似为椭圆形,解吸系数越大,相应的浓度等值线的范围越大;随着y方向弥散系数增大,浓度峰值上、下两侧的等值线梯度逐渐减小。研究成果可为地下污染物治理、地下水开采、核废料处置以及城市固体废弃物填埋等工程提供理论基础。  相似文献   

18.
Ai  Zhi Yong  Ye  Zi  Song  Xiaoyu  Wang  Lu Jun 《Acta Geotechnica》2019,14(4):1143-1160

We develop a new numerical model based on a precise integration method to investigate the coupled thermo-mechanical performance of layered transversely isotropic media around a cylindrical/tubular heat source. To obtain the relational matrices of the extended precise integration method, we first convert the governing equations of the problem into ordinary differential matrix equations through the Laplace–Hankel transform. Then, the cylindrical heat source is divided into a series of plane heat sources, and the plane temperature load term is added to the state vector between layer elements. By combining the layer elements, we build a layered transversely isotropic numerical model containing a cylindrical heat source in the transformed domain. Finally, we solve the model in the transformed domain and obtain the solution of the problem in the real domain through the Laplace–Hankel transform inversion. The accuracy of this method is verified by comparing the solutions with the results of the analytical method and the finite element method. Then, we study the influence of the anisotropy of thermal parameters, the embedded depth, the length/radius ratio, the type of heat source and the stratification of the medium on the thermo-mechanical coupled performance.

  相似文献   

19.
Consolidation of a poroelastic material that yields according to Drucker–Prager or Mohr–Coulomb criteria leads to a Stefan problem for time-dependent pore fluid pressure. The solution to the Stefan problem for a column of infinite depth is known and is adapted to poroelastic/plastic consolidation of a weightless material under a uniform surface load applied instantaneously and subsequently maintained constant. In this approach, the plastic potential and yield criterion need not be the same. If yielding occurs concurrently with application of load, then collapse is instantaneous. Otherwise, yielding may occur during the consolidation period. If so, then the elastic–plastic zone first appears at the surface and subsequently moves down the column. Depth to the elastic–plastic boundary is given by the simple expression Z = 2βt where β is a constant determined from continuity conditions at the elastic–plastic boundary. Time-dependent surface displacement that occurs during consolidation is directly proportional to Z. There is little difference between elastic–plastic and purely elastic results in a numerical example because there is little difference in the respective consolidation coefficients. Elastic–plastic finite element results obtained from a column of finite depth are in close agreement with analytical results as long as the pore pressure at the bottom of the column does not change significantly from the value induced by application of the surface load. The analytical solution provides for: (1) efficient evaluation of material properties effects on consolidation, including strength and fluid compressibility, and (2) an accurate way of validating poroelastic/plastic computer codes that are based on Drucker–Prager and Mohr–Coulomb criteria. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
An analytical model is developed for analyzing underground injection of wastes that undergo advection, dispersion, sorption, and first-order degradation. The model uses a time-dependent, step-function source that simulates intermittent waste injection in a continuous fluid injection well. The governing equations for a cylindrically symmetrical system are cast in nondimensional form and then transformed and solved in Laplace space. The Laplace space solution is inverted with the Crump algorithm, which uses the real and imaginary parts of a Fourier series. The numerical solution is verified by replicating the step-function source at the point of injection, and the behavior of the model is demonstrated in a series of figures. The model is recommended for quick, scoping calculations in which there is little site-specific information and periods of discontinuous radial injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号