首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
About 30% of the chromite grains of variable sizes in a chromitite seam at the base of the Merensky Reef of the Bushveld Complex on the farm Vlakfontein contain abundant composite mineral inclusions. The inclusions are polygonal to circular with radial cracks that protrude into the enclosing chromite. They vary from a few microns to several millimeters in diameter and are concentrated in the cores and mantles of chromite crystals. Electron backscattered patterns indicate that the host chromites are single crystals and not amalgamations of multiple grains. Na-phlogopite and orthopyroxene are most abundant in the inclusions. Edenitic hornblende, K-phlogopite, oligoclase and quartz are less abundant. Cl-rich apatite, rutile, zircon and chalcopyrite are present at trace levels. Na-phlogopite is unique to the inclusions; it has not been found elsewhere in the Bushveld Complex. Other minerals in the inclusions are also present in the matrix of the chromitite seam, but their compositions are different. The Mg/(Mg+Fe2+) ratios of orthopyroxene in the inclusions are slightly higher than those of orthopyroxene in the matrix. K-phlogopite in the inclusions contains more Na than in the matrix. The average compositions of the inclusions are characterized by high MgO (26 wt%), Na2O (2.4 wt%) and H2O (2.6 wt%), and low CaO (1.1 wt%) and FeO (4.4 wt%). The δ18O value of the trapped melt, estimated by analysis of inclusion-rich and inclusion-poor chromites, is ∼7‰. This value is consistent with the previous estimates for the Bushveld magma and with the δ18O values of silicate minerals throughout the reef. The textural features and peculiar chemical compositions are consistent with entrapment of orthopyroxene with variable amounts of volatile-rich melts during chromite crystallization. The volatile-rich melts are thought to have resulted from variable degrees of mixing between the magma on the floor of the chamber and Na-K-rich fluids expelled from the underlying crystal pile. The addition of fluid to the magma is thought to have caused dissolution of orthpyroxene, leaving the system saturated only in chromite. Both oxygen and hydrogen isotopic values are consistent with the involvement of a magmatic fluid in the process of fluid addition and orthopyroxene dissolution. Most of the Cr and Al in the inclusions was contributed through wall dissolution of the host chromite. Dissolution of minor rutile trapped along with orthopyroxene provided most of the Ti in the inclusions. The Na- and K-rich hydrous silicate minerals in the inclusions were formed during cooling by reaction between pyroxene and the trapped volatile-rich melts.  相似文献   

2.
The first event in the crystallization of pyroxenite in nodules from Bory was the growth of clinopyroxene at an uncertain 1,190(30)° C and 2.5(2)GPa. Lamellae of garnet and orthopyroxene in CPX nucleated slightly above 1,000° C and equilibrated at 940(20)° C and 3.9(6)GPa. The growth of lamellae was followed by crystallization of groundmass that corroded lamellar clinopyroxene. Phenocrysts of clinopyroxene and orthopyroxene in olivine pyroxenite from T?i Studně crystallized at 1,290(100)° C and 2.3(1.4)GPa. The lamellae in both phases nucleated between 1,400 and 1,200° C and equilibrated at 860(40)° C and 0.2(3)GPa, before regional metamorphism. (The temperatures of nucleation mentioned rest on uncertain assumptions in the phase-boundary theory and should be viewed with caution.) The serpentinized peridotite-pyroxenite from De?tná contains clinopyroxene relics (the only primary phase) with lamellae of a 1.42 nm sheet silicate topotactically pseudomorphing enstatite, possibly a chlorite or vermiculite. All phases in lamellae are crystallographically oriented in the hosts. The present cases suggest that when applying the theory of phase boundaries, a modified procedure of Robinson et al. should also be considered, in which identity of adjacent areas, rather than just vectors, is the basis of calculation. Spinel lamellae in CPX are bounded not only by faces parallel to coherent interfaces, but also by faces formed by accumulation of incoherent edges of growth ledges.  相似文献   

3.
Three linear zones of active andesite volcanism are present in the Andes — a northern zone (5°N–2°S) in Colombia and Ecuador, a central zone (16°S–28°S) largely in south Peru and north Chile and a southern zone (33°S–52°S) largely in south Chile. The northern zone is characterized by basaltic andesites, the central zone by andesite—dacite lavas and ignimbrites and the southern zone by high-alumina basalts, basaltic andesites and andesites. Shoshonites and volcanic rocks of the alkali basalt—trachyte association occur at scattered localities east of the active volcanic chain,The northern and central volcanic zones are 140 km above an eastward-dipping Benioff zone, while the southern zone lies only 90 km above a Benioff zone. Continental crust is ca. 70 km in thickness below the central zone, but is 30–45 km thick below northern and southern volcanic zones. The correlation between volcanic products and their structural setting is supported by trace element and isotope data. The central zone andesite lavas have higher Si, K, Rb, Sr and Ba, and higher initial Sr isotope ratios than the northern or southern zone lavas. The southern zone high-alumina basalts have lower Ce/Yb ratios than volcanics from the other zones. In addition, the central zone andesite lavas show a well-defined eastward increase in K, Rb and Ba and a decrease in Sr.Andean andesite magmas are a result of a complex interplay of partial melting, fractional crystallization and “contamination” processes at mantle depths, and contamination and fractional crystallization in the crust. Variations in andesite composition across the central Andean chain reflect a diminishing degree of partial melting or an increase in fractional crystallization or an increase in “contamination” passing eastwards. Variations along the Andean chain indicate a significant crustal contribution for andesites in the central zone, and indicate that the high-alumina basalts and basaltic andesites of the southern zone are from a shallower mantle source region than other volcanic rocks. The dacite-rhyolite ignimbrites of the central zone share a common source with the andesites and might result from fractional crystallization of andesite magma during uprise through thick continental crust. The occurrence of shoshonites and alkali basalts eat of the active volcanic chain is attributed to partial melting of mantle peridotite distant from the subduction zone.  相似文献   

4.
Lead contents of S-type granites and their petrogenetic significance   总被引:2,自引:0,他引:2  
An evaluation of Pb and Ba contents in S-type granites can provide important information on the processes of crustal partial melting. Primary low-T S-type granites, which form mainly by fluid-absent muscovite melting, may acquire a significant enrichment in Pb when compared to higher-T S-type granites for a given Ba content. We consider the following factors are responsible for this enrichment: Muscovite is a major carrier of Pb in amphibolite facies metapelites, and thus large quantities of Pb can be liberated upon its breakdown. The typical restite assemblage of Qz?+?Bt?+?Sil?±?Pl?±?Grt?±?Kfsp that forms during low-T, fluid-absent muscovite melting can take up only minor amounts of this Pb. This is because the crystal/melt Pb distribution coefficients for these restite minerals are low to very low. Only K-feldspar is moderately compatible for Pb, with a crystal/melt distribution coefficient of ~3, but its modal content in restites is usually low. At the same time, the restite assemblage will retain much Ba owing to the very high Ba uptake in both biotite and K-feldspar, which is an order of magnitude higher than for Pb. Thus, during a low-T anatectic event involving a low degree of crustal melting, Pb (as an incompatible element) can become strongly enriched in the partial melt relative to Ba and also relative to source rock values. In the case of higher-T anatexis and larger partial melt amounts, the Pb becomes less enriched and the Ba less depleted or even enriched relative to source rock values. During fractional crystallization of a S-type granite magma, Ba behaves strongly compatibly and Pb weakly compatibly. The concentrations of both elements decrease along the liquid line of decent. Owing to this sympathetic fractionation behavior, the primary, source-related Pb–Ba fingerprint (with weak or strong Pb enrichment) remains in evolved S-type granites. This facilitates a distinction between primary low-T S-type granites, which are related to muscovite melting, and secondary low-T S-type granites that evolve through fractional crystallization from a higher-T parental magma. We show in this paper that a simple logarithmic Pb versus Ba diagram can be a valuable aid for interpreting the petrogenesis of S-type granite suites.  相似文献   

5.
Lead isotopic compositions, and lead and uranium concentrations have been determined for samples from the Tongan islands of Late, Fonualei, Hunga-Ha'apai and Eua and for the Kermadec islands of Raoul, Macauley, Esperance and Napier. The Kermadec samples form a linear array in a Pb206/Pb204 vs Pb207/Pb204 plot which if interpreted in terms of a two stage mantle model indicates a mantle fractionation of Pb from U at about 1.2×109 yr. The Tongan volcanics, except Eua, have a very narrow range of isotopic compositions, only slightly exceeding the experimental error limits. This is interpreted to be the result of efficient mixing of the mantle in response to rapid extension behind the Tongan arc. The rate of extension appears to determine whether convection mixing can occur, since the sub-Kermadec mantle which experienced slower extension is not well mixed isotopically. The isotopic compositions show no evidence for a component in the magma derived from sediments dragged down the Benioff zone. The pre-Eocene Eua volcanics have lead which is substantially more radiogenic than the younger Tongan volcanics and are interpreted as a sample of the mantle before convective mixing occurred.  相似文献   

6.
Ignimbrites in the Devonian and Late Paleozoic volcanic belts in central Kazakhstan were produced in various geotectonic environments and are diverse in composition. The bulk composition of the Devonian ignimbrites is rhyolitic. The Eifelian rocks of the Chingiz island-arc system belong to the calc-alkaline series and are enriched in Zr, Nb, Y, and REE (predominantly LREE). The Frasnian ignimbrites that were formed in unusual island arcs of the Mediterranean type are ultrapotassic. Compared to the Eifelian ignimbrites, they bear lower concentrations of Zr, Nb, Y, and REE but are richer in Rb and Ba. Both rock varieties show clearly pronounced Eu minima and Ce anomalies. The Carboniferous and Permian ignimbrites were generated within a volcanic belt in a continental margin. The Carboniferous ignimbrites are mostly of dacite-rhyolite and sometimes of dacitic andesite composition. Compared to the Devonian ignimbrites, they are depleted in Zr, Nb, and Y at higher concentrations of Ba and low REE sums, which are notably dominated by LREE; their Eu minima are small, and they have no Ce anomalies. The Permian ignimbrites are predominantly of rhyolite composition. The Early Permian rocks have REE sums close to those in the Carboniferous rocks, but the former have clearly pronounced Eu minima and Ce anomalies. The Late Permian ignimbrites have total REE concentrations close to those in the Devonian ignimbrites, but the former are strongly enriched in LREE and have prominent Eu minima and Ce anomalies. The major-and trace-element composition of fiamme in all ignimbrite varieties varies depending on the relative age of the fiamme. The REE patterns of the fiamme differ from massif to massif, but their systematic changes from older to younger fiamme are similar. Along with the identity of the isotopic characteristics of whole-rock ignimbrite samples and fiamme of different ages in them, this testifies that the ignimbrites were formed not via the mixing of various melts but by the systematic evolution of a parental melts, which were different for different massifs.  相似文献   

7.
Some inclusions from Salt Lake Crater are essentially single-phase subcalcic clinopyroxenites whose original clinopyroxenes, prior to extensive unmixing, were tschermakitic subcalcic varieties with compositions close to Ca34Mg54Fe12. In addition to copious amounts of orthopyroxene, very minor garnet and spinel also were exsolved from the subcalcic clinopyroxenes.The genesis of the garnet pyroxenite suite at Salt Lake Crater has been examined in terms of three models, namely: (i) cumulates from alkali basaltic magmas; (ii) fractional fusion of basanitic garnet clinopyroxenite; and (iii) anatexis of upper mantle lherzolites. Field, mineralogical, chemical and experimental data collectively favour model (iii) and indicate that the nodules are genetically unrelated to their nephelinitic hosts. The Salt Lake garnet pyroxenites can be closely equated with the garnet pyroxenites in magmatictype layers in certain alpine-type ultramafic massifs and they are also similar to many garnet pyroxenite xenoliths in alkaline volcanics from other localities.Liquids produced by anhydrous partial melting of spinel Iherzolite at pressures of approximately 20 kb commonly have picritic chemistries. The crystallization behaviour of picritic liquids at elevated pressures ( 20 kb) indicates that the initial crystallization products may be either essentially single-phase subcalcic clinopyroxenites (with minimal high pressure fractionation) or a range of olivine-aluminous orthopyroxene-aluminous subcalcic clinopyroxene-garnet-(spinel) assemblages with variable 100 Mg/(Mg+Fe) ratios (when fractionation has been operative). All these assemblages may be subsequently modified by subsolidus exsolution and recrystallization.  相似文献   

8.
In order to infer equilibrium phase relations of abyssal tholeiites, olivine, plagioclase, augite, and pigeonite tholeiites from the ocean floor are plotted in terms of the CIPW norm proportions in the tetrahedron olivine-plagioclase-diopside-quartz. The phase relations of abyssal tholeiites have a general similarity in form to those of the experimentally studied relevant systems. Experimental studies on natural basalts allow the pressure of crystallization for abyssal tholeiitic magmas to be evaluated approximately. It appears that the pressure at which the phenocryst-stage crystallization of abyssal tholeiites takes place is as high as 2 or 3 kbar, provided that abyssal tholeiitic magmas are ‘dry’.Abyssal tholeiites could be derived from liquids that are in equilibrium with Ca-poor pyroxene in the pressure range of about 5–8 kbar. Major element chemistry of abyssal tholeiites is incompatible with the view that these tholeiitic basalts are derived from picritic magma by olivine fractionation.  相似文献   

9.
Spinels are commonly observed in alkali olivine basalts and olivine basalts that form the Plateau Magma Series of the British Tertiary Province. The spinels are either partly or wholly enclosed within olivine or may have adhered to olivine surfaces, and have undergone cation exchange and reaction with the cooling basaltic melt. Detailed microprobe traverses indicate complex exchanges involving Fe-Mg, Cr-Al, Fe3+-R3+ and Fe2+ Ti-R3+ substitutions. Some of these changes are due to a reaction with liquid that produced plagioclase and resulted in Al depletion in the spinel. A complex series of solid solutions between hercynite-magnesioferrite-chromite and Al-Cr-titomomagnetite, is indicated in a combination that precludes the disappearance of spinel by a simple peritetic reaction with the melt. The initial spinels are compositionally distinct from the chromites found in the Rhum layered series and underline the great compositional variability of liquidus spinels that can crystallise from basaltic liquid. Some of this variability may relate to the changing solubility of Cr, which behaves as a trace element, in basaltic liquids in response to slight changes in the structure of the melt.LDGO Contribution no. 2575  相似文献   

10.
董振信  陈立辉 《岩石学报》1999,15(4):607-615
通过对我国东部北起黑龙江省南至海南省31个产地的新生代碱性玄武岩中橄榄岩类 (纯橄岩、方辉橄榄岩及二辉橄榄岩) 包体和辉石岩类包体中的160 多个尖晶石电子探针分析数据, 论述了尖晶石的Cr-Al, Fe-Mg, Ni-Mg 主元素及有关比值和端员组分之间的关系, 分析研究了不同岩类包体中尖晶石的颜色、成分及成因之间的联系。并利用所分析的有关橄榄石、斜方辉石、单斜辉石共生矿物的电子探针分析数据, 采用新的、较合理的Brey-Kohler温度计及Kohler-Brey 压力计和Ballhaus etal. 氧逸度计算方法进行了计算, 探讨了尖晶石成分与其形成温度、压力和氧逸度状态的关系, 指出了尖晶石成分所反映的地幔亏损程度及部分熔融程度的变化规律及尖晶石 (相) 稳定的温度、压力和氧逸度范围。  相似文献   

11.
In the Upper Pliocene, during the final phase of igneous activity within the Pannonian Basin, alkali basalts were erupted. Their occurrences are restricted to two main regions in Hungary: 1) Transdanubia; 2) Nógrád County. The clinopyroxene phenocrysts of these rocks are zoned titanaugites which often have distinctive colourless or green cores. Two kinds of green cores can be distinguished: 1. olive-green cores (fassaitic augite and fassaite), and 2. grassgreen cores (salite and ferrosalite). Both types of green cores are comparatively iron-rich and they occur only in the basalts of Nógrád County. The olive-green fassaites probably precipitated from relatively evolved melts which have been mixed into their present host magmas, whereas the grassgreen salites and ferrosalites are xenocrysts derived probably from upper mantle rocks. The clinopyroxene zoning patterns suggest, that after being generated by small-degree partial melting in the mantle the Transdanubian basalts ascended to the surface with little or no modification en route, whereas those of Nógrád County had a more complex evolution, in which fractionation at depth and magma mixing played an important role.  相似文献   

12.
The Taoshan uranium ore district is one of the most important granite-hosted uranium producers in South China. The Taoshan granitic complex can be petrographically classified into several units of Caijiang, Huangpi, Daguzhai, and Luobuli, but the uranium deposits only occur within the Daguzhai granite unit. LA-ICP-MS zircon U–Pb dating indicates that both the Daguzhai granite and the Huangpi granite were emplaced at 154 ± 2 Ma. U contents (average 19.5 ppm) of the Daguzhai granite are higher than those of the Huangpi granite (average 7.3 ppm). The Daguzhai granite is composed of medium-grained two-mica granite, and the Huangpi granite is composed of medium- to coarse-grained biotite granite. These two granites show obvious differences in major element, trace element and isotopic geochemical characteristics. Compared to the Huangpi granite, the Daguzhai granite has higher A/CNK ratios, higher P2O5 contents and lower CaO contents, and is more enriched in Rb, Ba, U, and more depleted in Sr, Eu and Ti. The εNd(t) values of the Daguzhai granite vary from − 12.2 to − 11.0 with two-stage model ages of 1.84 to 1.93 Ga. The εNd(t) values of the Huangpi granite are slightly higher (− 9.7 to − 8.6) and the Nd model ages are younger (1.64 to 1.73 Ga). Comparative studies imply that the Daguzhai granite belongs to typical S-type and might be derived from the partial melting of parametamorphic rocks from metamorphic basement of the Zhoutan Group. In contrast, the Huangpi granite belongs to fractioned I-type, which might be derived from the partial melting of a mixture of ortho- and para-metamorphic rocks of the Zhoutan Group. These different magma sources might explain the different U contents of the two granites. In general, the source factor is an important controlling factor for the genesis of U-bearing granites in South China. U-bearing granites in South China show some common mineralogical and geochemical characteristics, which can be used to guide further exploration of granite-hosted U deposits.  相似文献   

13.
One of the most puzzling features of the UG1 chromitite layers in the famous exposures at Dwars River, Eastern Bushveld Complex, is the bifurcation, i.e. convergence and divergence of layers along strike that isolate lenses of anorthosite. The bifurcations have been variously interpreted as resulting from: (1) the intermittent accumulation of plagioclase on the chamber floor as lenses, terminated by crystallization of continuous chromitite layers (the depositional model); (2) late-stage injections of chromite mush or chromite-saturated melt along anastomosing fractures that dismembered semi-consolidated plagioclase cumulates (the intrusive model); (3) post-depositional deformation of alternating plagioclase and chromite cumulates, resulting in local amalgamation of chromitite layers and anorthosite lenses that wedge out laterally (the deformational model). None of these hypotheses account satisfactorily for the following field observations: (a) wavy and scalloped contacts between anorthosite and chromitite layers; (b) abrupt lateral terminations of thin anorthosite layers within chromitite; (c) in situ anorthosite inclusions with highly irregular contacts and delicate wispy tails within chromitite; many of these inclusions are contiguous with footwall and hanging wall cumulates; (d) transported anorthosite fragments enclosed by chromitite; (e) disrupted anorthosite and chromitite layers overlain by planar chromitite; (f) protrusions of chromitite into underlying anorthosite; (g) merging of chromitite layers around anorthosite domes. We propose a novel hypothesis that envisages basal flows of new dense and superheated magma that resulted in intense thermo-chemical erosion of the temporary floor of the chamber. The melting and dissolution of anorthosite was patchy and commonly inhibited by chromitite layers, resulting in lens-like remnants of anorthosite resting on continuous layers of chromitite. On cooling, the magma crystallized chromite on the irregular chamber floor, draping the remnants of anorthosite and merging with pre-existing chromitite layers excavated by erosion. With further cooling, the magma crystallized chromite-bearing anorthosite. Emplacement of multiple pulses of magma led to repetition of this sequence of events, resulting in a complex package of anorthosite lenses and bifurcating chromitite layers. This hypothesis is the most satisfactory explanation for most of the features of this enigmatic igneous layering in the Bushveld Complex.  相似文献   

14.
A new technique for the determination of intrinsic oxygen fugacities (?O2's) of single and polyphase geological samples with solid ZrO2, oxygen-specific electrolytes is described. Essentially the procedure involves isolating the emf signal from the sample from that unavoidably imposed by the residual atmosphere inside the sample-bearing sensor. By varying the ?O2 of the residual atmosphere, it is possible to determine a ‘plateau’ value of constant ?O2 recorded from the sensor which represents a reversed intrinsic ?O2 measurement for the sample alone, and where the extent of the plateau reflects the innate buffering capability of the sample. A measure of the precision and accuracy of the data obtained is the fact that identical ?O2 values are obtained whether on a heating or cooling cycle of the sample + compatible atmosphere system.These techniques have been applied to measurements of the intrinsic ?O2 of spinels from peridotites and megacryst assemblages from Australia, West Germany and the U.S.A. Oxidation states range from ~- 0.25 log10 units more oxidized to 1 log10 unit more reduced than the iron-wüstite (IW) buffer. The overall reduced nature of the spinels and the range of ?O2's obtained are striking features of the data. One implication of the results is that the majority of mantle-derived magmas are initially highly reduced, and the relatively oxidized values observed at surface (~- 4–5 log10 orders more oxidized than IW) reflect late-stage alteration, perhaps by H2 loss (Sato, 1978).  相似文献   

15.
Analyses of the Pt-Pd-Ni sulphides cooperite, braggite, and vysotskite reported from worldwide occurrences seem to imply a continuum of compositions between vysotskite and cooperite, with no obvious miscibility gap. This is contrary to the experimentally confirmed miscibility gap between cooperite and braggite, and the established compositional gap between co-existing cooperite and braggite from the Merensky Reef. Although the only unambiguous way of distinguishing between cooperite and braggite is to obtain structural information through X-ray diffraction or equivalent techniques, most identification of Pt-Pd-Ni sulphides is based on microanalytical techniques due to the small grain size of most platinum-group minerals. Ni contents also have to be considered because a classification based on the Pt/Pd ratio alone can be very misleading. Naming of Pt-Pd-Ni sulphide compositions with high Pt contents based on qualitative or semi-quantitative analyses should be avoided. Natural Pt-Pd-Ni sulphides which project into the compositional gap (established by experimental work) cannot be named without supporting structural information. Compositions of grains, which plot inside the gap, are considered to be metastable and to result from the loss of Pd through interaction with hydrothermal fluids.  相似文献   

16.
The iron-rich ultramafic pegmatites comprise a suite of coarse-grainedrocks that form discordant bodies within the layered sequenceof the Bushveld Complex. These pegmatites, which are considerablymore abundant than is generally realized, provide evidence forthe differentiation of iron-rich residual melts. The pegmatitesare composed largely of iron-rich olivine and clinopyroxene,together with Ti-magnetite and ilmenite. Feldspar is characteristicallyabsent, but paradoxically the pegmatites preferentially replaceanorthositic cumulates. Two subgroups are recognized, olivine-clinopyroxenepegmatite and Fe-Ti oxides pegmatite. With increased stratigraphicheight the pegmatites become richer in Fe-Ti oxides. Thus, olivine-clinopyroxenepegmatite is prevalent in the Upper Critical and Lower MainZones, whereas Fe-Ti oxide pegmatite is restricted to the UpperMain and Upper Zones. Zoned pegmatite, with a core of Fe-Tioxide pegmatite, is transitional between the two subgroups. New whole-rock and electron microprobe analyses of olivine-clinopyroxenepegmatite from the Upper Critical and Lower Main Zones provideconvincing evidence that their composition is directly relatedto height. Cryptic compositional variations are analogous tothose displayed by the layered cumulates, but for a given heightthe pegmatites are always more evolved. Compositions of clinopyroxenein the pegmatites reflect a near-linear relationship with height,whereas cumulus pyroxenes display upward iron-enrichment trendscomplicated by replenishment and reaction with trapped intercumulusliquid. The olivine-clinopyroxene pegmatite formed by magmatic replacementof earlier-formed cumulates in response to infiltration of iron-richmelts. Suitably differentiated melts comprised intercumulusand residual liquids derived from thick anorthosite layers.The absence of feldspar, although not fully understood, is attributedto an immiscible relationship between dense, iron-rich meltsand light, silica-alkali-rich liquids. The latter infiltratedupward to be reincorporated into the resident magma. The iron-richmelts, however, drained down into the crystallizing cumulatepile. Channelling along early-formed fractures and joints wassignificant, locally resulting in huge pipe-like bodies of pegmatite. The iron-rich melts became increasingly differentiated withheight, partly in response to the fractional crystallizationof more evolved cumulates. The olivine-clinopyroxene pegmatitesare related to infiltration of Fe-Ti oxide-rich silicate melt,whereas Fe-Ti oxide pegmatite is ascribed to Fe-Ti oxide liquid,as originally argued by Bateman (1951). The Bushveld Complexfollowed the Fenner trend of almost uninterrupted iron enrichment.Evidence of pronounced iron enrichment is, however, manifestedin the discordant iron-rich ultramafic pegmatites several thousandsof metres below the height at which iron-rich cumulates areobserved.  相似文献   

17.
东天山大草滩蛇纹岩中发育副矿物铬铁矿,部分铬铁矿具环带结构,核部为铝铬铁矿,富Al贫Fe,Cr2O3为39.27%~42.65%,Al2O3为24.58%~26.21%,Ti O2含量很低(0.20%),Fe O为12.18%~18.14%,而Fe2O3含量为0.33%~7.30%,Cr#为50.6~53.5,Mg#为53.3~68.2,Fe2+#为31.8~46.7。核部铝铬铁矿结晶温度平均约为1 385℃,结晶压力平均为2.77 GPa,推断其形成深度约为86 km,相当于软流圈位置;相对于FMQ缓冲剂的地幔氧逸度为FMQ-4.38~FMQ+0.63 log单位,平均值为FMQ-1.15 log单位;地幔熔融程度F为21.04%~21.28%。推测大草滩蛇纹岩的原岩橄榄岩单元源区为石榴石二辉橄榄岩,形成于亏损的软流圈地幔,可能产自俯冲带环境中的岛弧环境。大草滩铬铁矿的环带结构特征表明其经历了温度由高到低、氧逸度由低到高的过程,反映了大草滩蛇纹岩由最初的高温高压地幔环境被推覆到地壳,随后经历了低温低压的浅程度区域变质作用。  相似文献   

18.
Mineralogical data, coupled with whole-rock major and trace element data of mafic xenoliths from two occurrences of the Egyptian Tertiary basalts, namely Abu Zaabal (AZ) near Cairo and Gabal Mandisha (GM) in the Bahariya Oases, are presented for the first time. Chemically, AZ basalts are sodic transitional, while those of GM are alkaline. In spite of the different petrographic and geochemical features of the host rocks, mafic xenoliths from the two occurrences are broadly similar and composed essentially of clinopyroxene, plagioclase, alkali feldspar, and Fe–Ti oxides. The analytical results of host rocks, xenoliths and their minerals suggest that the xenoliths are cognate to their host magmas rather than basement material. The mafic xenoliths are olivine-free and contain alkali feldspar contrary to the phenocryst assemblage of the host rocks, confirming that they are not cumulates from the host magma. The geochemical and mineralogical characteristics show that the precursor magmas of these xenoliths are more fractionated and possibly contaminated compared to those of the host rocks. Estimated crystallization conditions are  1–3 kbar for xenoliths from both areas, and temperature of  950–1100 °C vs. 920–1050 °C for AZ and GM, respectively. These cognate xenoliths probably crystallized from early-formed, highly-fractionated anhydrous magma batches solidified in shallow crustal levels, possibly underwent some AFC during their ascent, and later ripped-up during fresh magma pulses. The xenoliths, although rare, provide an evidence for the importance of crystal fractionation at early evolution of the Egyptian Tertiary basalts.  相似文献   

19.
Connectivity between the western and eastern limbs of the Bushveld Complex   总被引:1,自引:0,他引:1  
The mafic layered rocks of the Bushveld Complex are 6–8 km thick and crop out over an area of 65,000 km2. Previous interpretations of the Bouguer gravity anomalies suggested that the intrusion consisted of two totally separate bodies. However, the mafic sequences in these arcuate western and eastern limbs are remarkably similar, with at least six petrologically distinctive layers and sequences being recognisable in both limbs. Such similarity of sequences in two totally discrete bodies 200–300 km apart is petrologically implausible, and it is suggested that they formed within a single lopolithic intrusion.

All previous Bouguer gravity models failed to consider the isostatic response of the crust to emplacement of this huge mass of mafic magma. Isostatic adjustment as a result of this intrusion would have caused the base of the crust to be depressed by as much as 6 km. With this revised whole crustal model, it becomes possible to construct a gravity model, consistent with observed data, which includes a 6 km-thick sequence of mafic rocks connecting the western and eastern limbs of the Bushveld Complex. The exact depth at which the mafic rocks of the Bushveld Complex lie in the centre of the structure cannot be constrained by the gravity data.

Such a first-order model is an approximation, because there have been subsequent deformation and structural readjustments in the crust, some of them probably related to the emplacement of the Bushveld Complex. Specifically, the observed geometry of the rocks around the Crocodile River, Dennilton, Marble Hall and Malope Domes suggests that major upwarping of the crust occurred on a variety of scales, triggered by emplacement of the Bushveld Complex.  相似文献   


20.
Lukanin  O. A.  Zharkova  E. V.  Senin  V. G. 《Doklady Earth Sciences》2021,497(2):295-299
Doklady Earth Sciences - The results of study of the intrinsic oxygen fugacity (fO2) of various types of tektites from the European and Australasian scattering fields (moldavites, indochinites,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号