首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noble gases were studied in six wells, located on a 4.5 km south to north section across the Larderello field. Depth of wells, flow and gas/steam ratios are known to increase from south to north. Exploitation progressed in the same direction. The following noble gas patterns are observable: (a) Atmospheric Ar, Kr and Xe reflect productions of gas-depleted water at Colombaia 2 and progressively more gas-enriched steam towards the Gabbro wells. (b) Radiogenic4He and40Ar are observed in increasing concentrations from south to north. (c) The radiogenic and atmospheric gases reveal a positive correlation, indicating that the recharging water enters deep into the system, and gets well mixed with the radiogenic gases prior to the steam separation. (d) Gas contents and relative abundances of radiogenic argon decrease with production, thus supplying markers for the degree of exploitation in a well and a guide for optimum well spacing. (e) Excess neon over argon is observed and discussed in terms of crustal origin versus possible fractionation of atmospheric noble gases due to pertial steam separation.  相似文献   

2.
The deep well MV5A, drilled in the western part of the Larderello geothermal field, crossed a 20-cm-thick hydraulic fracture breccia unit at a depth of 1090 m below ground level (b.g.l.). This breccia occurs in a fine-grained Triassic metasandstone and consists of angular to subangular clasts of up to some centimeters in size. Pervasive alteration has affected the breccia clasts and wall rock around the breccia, with the formation of Mg–Fe chlorite. After such alteration, hydrothermal circulation caused the precipitation of two generations of calcite cement. Then, ankerite partially replaced these two calcite generations. Ankerite also precipitated in late veinlets with chlorite. Late hydrothermal activity led to the crystallization of albite, quartz and finally, anhydrite. The calcite contains vapor-rich inclusions and two populations of liquid-rich (L1 and L2) inclusions. L1 inclusions are characterized by homogenization temperatures between 304 and 361°C and salinities from 7.4 to 11.6 wt.% NaCl equivalent; L2 inclusions revealed homogenization temperatures in the range of 189–245°C and salinities from 2.6 to 6.3 wt.% NaCl equivalent. The fluids contained in L2 inclusions were probably trapped coevally with some vapor-rich inclusions under boiling conditions after the L1 inclusions formed. Some of the abundant vapor-rich inclusions in calcite may also represent early, low-temperature inclusions affected by decrepitation and/or stretching and/or leaking during L1 trapping. The liquid-rich (L) inclusions trapped at later stages in ankerite, albite and anhydrite display, respectively, homogenization temperature ranges of 189–198°C, 132–145°C, and 139–171°C, and salinities ranging from 1.6 to 1.7 wt.% NaCl equivalent, 1.4 to 2.1 wt.% NaCl equivalent and 3.7 to 6.2 wt.% NaCl equivalent. The inclusions studied record the evolution, over time, of the fluids flowing in the breccia level: L1 inclusions capture high-temperature fluid (about 300 to 350°C) of high salinity (around 10 wt.% NaCl equivalent) at above-hydrostatic pressures (up to about 150 bar). The L2 inclusions in calcite and liquid-rich inclusions in ankerite and albite represent subsequent hydrothermal fluid evolution toward lower temperatures (about 250 to 130°C), pressures (45 to a few bar) and salinities (6.3 to 1.4 wt.% NaCl equivalent). During this stage, boiling processes and infiltration of meteoric waters probably occurred. Finally, moderately saline fluids (around 5 wt.% NaCl equivalent) at a temperature (about 160°C) close to that of present-day in-hole measurements was trapped in the anhydrite inclusions. The liquids trapped in liquid-rich inclusions circulated at 41,000 years (maximum age of calcite) or later. This age represents an upper limit for the development of vapor-dominated condition, in this part of the geothermal system. The fluids circulating at the breccia level were probably meteoric and/or connate waters. These fluids may have interacted with the anhydrite and carbonate bearing formations present in the Larderello area. The occurrence of the hot and saline fluids, trapped in L1 inclusions at above-hydrostatic pressure, suggests that similar fluids but with higher pressure (≥167 bar) and temperature (≥360°C) may have been responsible for rock fracturing.  相似文献   

3.
Boron concentrations and isotope compositions have been measured for 93 water samples from the hot springs and drill-holes in the geothermal system in the Yunnan-Tibet Geothermal Belt(YTGB),China.Boron concentrations range from 0.036–472.4ppm,and theδ11B values range from -16.0‰to 13.1‰,indicating the non-marine origin for each geothermal system.We observed a clear binary mixing relationship between the B concentrations and B isotope compositions in Tibet geothermal area.This relationship can be well explained by two sources,i.e.,marine carbonate rocks and magmatic rocks,for the Tibet geothermal water.No evidence supports a mantle contribution to B.In addition,we found that the precipitation only plays a dilution role for B of geothermal waters.δ11B values for the precipitation across the southern Tibetan Plateau area range from -6.0‰ to -6.8‰at least.Due to data scarcity in Yunnan geothermal area,we observed possible different boron sources from the Tibet geothermal system.Comparing it with other geothermal systems in the world,we found that the samples from YTGB have the lowestδ11B values and the largest range of B concentration,which might be related to their special geological background.On the whole,the world geothermalδ11B-Cl/B relation suggests a mixing process between marine and non-marine sources.Additionally,we suggest that B source of B-enriched geothermal waters is mainly from B-enriched crustal country-rocks,instead of mantle.  相似文献   

4.
During 1979–1989, variations were observed in the oxygen composition of the water contained in the geothermal reservoir at Vulcano Island, Italy.The reservoir water, that has a magmatic origin, showed an oxygen composition of +1.0±0.5‰ δ18O during periods without local tectonic earthquakes, and an oxygen composition of +3.4±0.5‰ δ18O after the highest-energy seismic activity that occurred recently near the island. A slight increase of the δ18O value in the reservoir water was also observed after a low-energy sequence of tectonic earthquakes that occurred at very shallow depth just beneath Vulcano Island. These 18O variations in the reservoir water are consistent with earthquake-induced increases in the contribution from high-temperature δ18O-rich magmatic condensate to the geothermal reservoir, and with subsequent decreases in the δ18O value due to 18O exchanges at the temporarily increased reservoir temperature during reactions between the highly reactive magmatic condensate and the local rocks.Only minor changes in the deuterium composition of the reservoir water occurred with time, as the δD value in the magmatic condensate released from the magma after major local earthquakes quickly approached the δD value of the water contained in the geothermal reservoir.Also the chloride concentration in the reservoir water appears to be linked to the contribution from the magmatic fluid. This chloride content seems not to have undergone major changes with time, as it may be buffered by temporary increases in the reservoir temperature up to values >300°C induced by major local earthquakes. This mechanism may possibly occur also in other magmatic–hydrothermal systems.  相似文献   

5.
Summary Measurements of thermal gradients and rock conductivity in the steam field of Larderello, along a cross section of about 12 km length, reveal a great anomaly of terrestrial heat flow. Heat flow varies between 6 and 14 cal-cm2 sec, while thermal gradients are between 200 and 800 deg C-km. The measurements show that heat flow values characterize better the productive areas than thermal gradient anomalies. Knowing the heat flow it is possible to set up the thermal balance of the steam producing area, which is of considerable importance in planning the production of the steam field.  相似文献   

6.
Stable isotopes in the water molecule (2H or D and 18O), carbon, and nitrogen are useful tracers and integrators of processes in plant ecohydrological systems across scales. Over the last few years, there has been growing interest in regional to continental scale synthesis of stable isotope data with a view to elucidating biogeochemical and ecohydrological patterns. Published datasets from the humid tropics, however, are limited. To be able to contribute to bridging the “data gap” in the humid tropics, here, we publish a relatively novel and unique suite of δ13C, δ15N, δ2H, and δ18O isotope data from three sites across a moisture gradient and contrasting land use in Puerto Rico. Plant tissue (xylem and leaf) samples from two species of mahogany (Swietenia macrophylla and Swietenia mahagoni) and soil samples down to 60 cm in the soil profile were collected in relatively “wet” (July 2012) and “dry” (February 2013) periods at two sites in northeastern (Luquillo) and southwestern (Susua) Puerto Rico. The same sampling suite is also being made available from a highly urbanized site in the capital San Juan. Leaf samples taken in July 2012 and February 2013 were analyzed for δ13C and δ15N; all xylem and bulk soil samples were analyzed for δ2H and δ18O. Soil samples taken in July 2012 were analyzed for δ13C and δ15N. Leaf δ15N and δ13C dataset showed patterns that are possibly associated with site differences. While spatial patterns were also apparent in soil δ15N and δ13C dataset, the positively linear δ15N –δ13C relationship tends to weaken with site moisture. Soil depth and site moisture patterns were also observed in the δ2H and δ18O datasets of bulk soil and xylem samples. The purpose of these datasets is to provide baseline information on soil–plant water (δ2H and δ18O, N = 319), δ13C (N = 272), and δ15N (N = 269) that may be useful in a wide range of research questions from ecohydrological relations to biogeochemical patterns in soils and vegetation.  相似文献   

7.
Quantifying soil water storage, mixing, and release via recharge, transpiration, and evaporation is essential for a better understanding of critical zone processes. Here, we integrate stable isotope (2H and 18O of soil water, precipitation, and groundwater) and hydrometric (soil moisture) data from 5 long‐term experimental catchments along a hydroclimatic gradient across northern latitudes: Dry Creek (USA), Bruntland Burn (Scotland), Dorset (Canada), Krycklan (Sweden), and Wolf Creek (Canada). Within each catchment, 6 to 11 isotope sampling campaigns occurred at 2 to 4 sampling locations over at least 1 year. Analysis for 2H and 18O in the bulk pore water was done for >2,500 soil samples either by cryogenic extraction (Dry Creek) or by direct equilibration (other sites). The results showed a similar general pattern that soil water isotope variability reflected the seasonality of the precipitation input signal. However, pronounced differences among sampling locations occurred regarding the isotopic fractionation due to evaporation. We found that antecedent precipitation volumes mainly governed the fractionation signal, temperature and evaporation rates were of secondary importance, and soil moisture played only a minor role in the variability of soil water evaporation fractionation across the hydroclimatic gradient. We further observed that soil waters beneath conifer trees were more fractionated than beneath heather shrubs or red oak trees, indicating higher soil evaporation rates in coniferous forests. Sampling locations closer to streams were more damped and depleted in their stable isotopic composition than hillslope sites, revealing increased subsurface mixing towards the saturated zone and a preferential recharge of winter precipitation. Bulk soil waters generally comprised a high share of waters older than 14 days, which indicates that the water in soil pores are usually not fully replaced by recent infiltration events. The presented stable isotope data of soil water were, thus, a useful tool to track the spatial variability of water fluxes within and from the critical zone. Such data provide invaluable information to improve the representation of critical zone processes in spatially distributed hydrological models.  相似文献   

8.
Summary An isallo stress analysis of the fracture field in the area of Larderello, Italy, is carried out. Some of the general implications of the theory are discussed, and the local geological features of the area are briefly outlined. ThePHS direction is chosen on the basis of additional structural information. The inferred results are in satisfactory agreement with those expected from field geology, and a tentative attempt to a unitary explanation of the origin of the fracture field is made upon this basis.
Riassunto Il sistema di fracture nella zona di Larderello in Italia è analizzato con l'aiuto della teoria interpretativa detta «isallo stress theory». Alcuni concetti di carattere generale vengono discussi, e le locali caratteristiche geologiche sono brevemente descritte. La direzione di massima compressione orizzontale (PHS) è scelta sulla base di considerazioni sulla tettonica della zona. I risultati cui si perviene sono in soddisfacente accordo con quelli postulati in base ad osservazioni di carattere puramente geologico, e permettono di avanzare una spiegazione unitaria dell'origine delle fratture.
  相似文献   

9.
10.
Hydrogen sulphide (H2S) is one of a number of gaseous species associated with geothermal activity in the Taupo Volcanic Zone (TVZ), New Zealand. The city of Rotorua is located within Rotorua Caldera in the TVZ and is one of the few urban areas in the world where a large population (>60,000 people) is frequently exposed to geothermal emissions. In order to evaluate the health hazard from long-term exposure to H2S being emitted from the Rotorua geothermal field, a passive sampler has been developed to measure concentrations of H2S at many locations across the city simultaneously. In contrast to other passive or pump-based samplers, the sampler is inexpensive, easily mass-manufactured, and involves the reaction of H2S with silver halide contained in treated photographic paper. H2S-exposed paper shows a distinct colour change from white to dark brown as H2S concentrations increase and is sensitive to concentrations between ≪30 and around 1000 ppb. Rotorua city can be divided into three regions—an area of low H2S concentration in the west, a ‘corridor’ of high concentrations running north–south through the city centre where H2S is being emitted, and an area of medium concentration to the east which is influenced by the prevailing wind direction, creating a plume from the central corridor. The data give new insight into the subsurface routes of degassing in the Rotorua geothermal field, by showing the surface expression of the main upflow zone and the direction of the conjectured faulting below.  相似文献   

11.
A conceptual hydrogeological model has been created and a corresponding 3D numerical, thermal hydrodynamic model developed for the Pauzhetka geothermal field; the model covers an area of 13.6 km2 and includes three layers: a basement with conduits that supply the heat carrier, a hydrothermal reservoir, and an upper aquifer with percolation “windows.” Inversion is handled by the iTOUGH2 program; the model was calibrated using the 1960-2006 data on the natural state and extraction at 13675 calibration points. The inversion simulation has made it possible to identify and evaluate the key parameters of the model and to identify the sources that generate the recoverable reserves. Forecasting modeling for the period from 2007 to 2032 shows a sustainable extraction of 29 kg/s steam, provided five additional wells have been put into operation, which will provide 6.8 MWs of production by the geothermal power plant. The results of forecasting modeling, in combination with observations on long-term operation, allow an evaluation of the recoverable reserves in the industrial categories.  相似文献   

12.
Available gravity and magnetic data of the Phlegraean Fields geothermal area, Naples, Italy, have been interpreted and the obtained structural models discussed in the light of the other available geological, volcanological and geophysical data.On the basis of the results of a previous seismic reflection survey in the Gulf of Naples and in the Pozzuoli Bay, which delineated a basement characterized by a seismic velocity of 4–6 km/s, it has been possible to evaluate the gravity anomaly connected with the morphology of this horizon ( = 2.7 g/cm3).The residual anomaly map, obtained after subtraction of the regional long-wavelength components relative to mantle and deep crustal structures and the computed components relative to the above-mentioned seismic basement, shows up as a circular low with an amplitude of 10 mgal centred in the Pozzuoli Bay. This gravity low has been interpreted as due to the occurrence, in the centre of Pozzuoli Bay, of light (Δ = −0.2 g/cm3) material with a maximum thickness of about 2 km. However, a contribution to the anomaly due to a narrow magmatic body intruded in the basement, as suggested by volcanological and ground deformation data, cannot be excluded.The aeromagnetic map of the Phlegraean Fields is characterized by three main anomalies which have been fitted by superficial tridimensional parallelepipedic bodies, schematically representing lava flows and domes. Their anomalies have been subsequently subtracted from the observed field, obtaining as a residual a large anomaly centred in the southwestern area of the Pozzuoli Bay. It has been interpreted as being due to a lowmagnetized body which, taking into account the thermal state of the area, should represent that part of the pyroclastic sequence which has lost part of its magnetization by thermo-chemical alteration.  相似文献   

13.
To understand the crustal electric structure of the Puga geothermal field located in the Ladakh Himalayas, wide band (1000 Hz–0.001 Hz) magnetotelluric (MT) study have been carried out in the Puga area. Thirty-five MT sites were occupied with site spacing varying from 0.4 to 1 km. The measurements were carried out along three profiles oriented in east–west direction. After the preliminary analysis, the MT data were subjected to decomposition techniques. The one-dimensional inversion of the effective impedance data and the two-dimensional inversion of the TE (transverse electric) and TM (transverse magnetic) data confirm the presence of low resistive (5–25 Ω m) near surface region of 200–300 m thick in the anomalous geothermal part of the area related to the shallow geothermal reservoir. Additionally, the present study delineated an anomalous conductive zone (resistivity less than 10 Ω m) at a depth of about 2 km which is possibly related to the geothermal source in the area. A highly resistive basement layer separates the surface low resistive region and anomalous conductive part. The estimated minimum temperature at the top of conductive part is about 250 °C. The significance of the deeper conductive zone and its relation to the geothermal anomaly in the area is discussed.  相似文献   

14.
Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Na a locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na–HCO3–SO4 facies. The cold groundwaters are Ca–Mg–HCO3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca–Mg–HCO3 type cold groundwaters to the Na–HCO3–SO4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.  相似文献   

15.
Integrated geophysical surveys were performed in two sites, Fossa di Fuardo and Terme di San Calogero in Lipari Island, Southern Italy with the intent of the exploration of low-enthalpy geothermal fluids. Both sites show strong geochemical and geologic evidences of hydrothermal activity. The geophysical methods consist of two microgravimetric surveys, two 2D geoelectric profiles, a seismic reflection profile and a five seismic refraction profiles. The seismic methods allowed us to locate the main subsurface seismic discontinuities and to evaluate their geometrical relationships. The gravity field was used to constraint the seismic discontinuities, while the electric prospecting let discriminate more conductive areas, which could correspond to an increase in thermal fluid circulation in the investigated sites.The results obtained by the different geophysical methods are in good agreement and permit the definition of a reliable geo-structural model of the subsurface setting of the two investigated areas. A low-enthalpy geothermal reservoir constituted by a permeable pyroclastic and lava sequence underlying two shallow impermeable formations was found at Fossa del Fuardo. The reservoir is intersected by some sub-vertical faults/fractures that probably play an important role in convoying the thermal water up to the surface. At the other site, Terme di S. Calogero, the geophysical surveys showed that an intense circulation of fluids affects the subsurface of the area. This circulation concentrates along a ENE-trending fault located at a little distance from the thermal resort. The hot fluids may upraise along the fault if the width of the ascent area is smaller than 20 m.  相似文献   

16.
Direct current resistivity surveys and shallow temperature measurements were carried out for geothermal exploration in a part of Parvati valley, goethermal field, Himachal Pradesh, India. At a few places, the Schlumberger soundings pointed to the presence of a relatively low-resistivity shallow layer, which probably represents fractured and jointed quartzite, saturated with hot/cold water. Wenner resistivity profiles indicate the presence of some possible shallow subsurface lateral hot water channels across the valley at Manikaran. Shallow temperature measurements show a good subsurface thermal anomaly near the confluence of the rivers Brahmaganga and Parvati. The results of the survey, together with other available geodata, suggest that an anomalous heat source does not lie beneath the study area.It is postulated that the meteoric water, originating at high elevations after heating as a result of circulation at depth, emerges at the surface in the Parvati valley as hot springs, after mixing in various proportions with near surface cold waters.  相似文献   

17.
The waters discharged in Southern Latium (south of Rome) are mainly meteoric in origin. Two types of circulation occur in the region: one infiltrates the carbonate sediments outcropping in the area and emerges from fractures along their borders, the other consists of waters that infiltrate and circulate essentially within the Albani volcanic rocks.The first type produces either alkaline earth bicarbonate-sulfate waters or, if they mix with fossil marine waters or interact with recent marine sediments, alkaline-chloride waters (on the Pontina Plain). The chemistry of the waters produced by the second type of circulation (alkaline earth-bicarbonate or alkaline-bicarbonate) is strictly related to their gaseous phases, which consist for the most part of the CO2 produced at depth.Silica and gas geothermometers, whose results correlate well, indicate that low enthalpy fluids (≤ 80°C) are present throughout the study area, with the exception of the northwestern part where medium enthalpy fluids (150°C) also appear.  相似文献   

18.
The Ihlara Valley is situated within a volcanic arc that is formed by the collision of the eastern Mediterranean plate system with the Anatolian plate. In this study we will present data from a reservoir monitoring project over the Ihlara-Ziga geothermal field, located 22 km east of Aksaray, in central Anatolia.Although identified geothermal resources in the Ihlara Valley are modest, substantial undiscovered fields have been inferred primarily from the volcanic and tectonic setting but also from the high regional heat flow (150–200 mWm−2) on the Kir ehir Massif.In 1988 and 1990, geoelectromagnetic surveys were undertaken by MTA-Ankara to confirm the presence of a relatively shallow (≈ 0.5–1 km), hydrothermally caused conductive layer or zone. CSAMT and Schlumberger resistivity data show good correspondence with each other, and 2-D geoelectric models are also in harmony with geologic data and gravity anomalies.The depth of the resistive basement, which is interpreted as Paleozoic limestone, is 200–250 m in the western part and increases eastward (≈ 600–750 m). This may imply N-S-oriented normal faulting within the survey area. The parameters of the top layer are a resistivity of 25 to 95 ohm m and a thickness of between 100 and 250 m. The thickness of the conductive tuffs between the top layer and the basement, whose resistivity is about 4–5 o hmm, also increases eastward (from 100 to 450 m). The apparent resistivity maps for the frequencies between 32 and 2 Hz reveal a localized low resistivity anomaly to the east of Belisirma.  相似文献   

19.
20.
A geochemical model explaining the presence of fumaroles having different gas composition and temperature at the top of the crater and along the northeastern coast of Vulcano island is proposed. A pressurized biphase (liquid-vapor) reservoir at the depth of about 2 km is hypothesized. Energy and mass balance sheets controlP-T conditions in the system.P-T must vary along a boiling curve of brine as liquid is present. The CO2 content in the steam is governed by the thermodynamic properties of the fluids in the H2-NaCl-CO2 system. On the assumption that oxygen fugacity in the system is between the HM-FMQ oxygen buffers, observed SO2/H2S, CO2/CO, CO/CH4 ratios in the fumarolic gases at the Fossa crater appear in equilibrium with a temperature higher than that observed, such as may exist at depth. The more reduced gas phases present on the sea-side may result from re-equilibrium processes in shallower aquifers. The suggested model would help in monitoring changes in volcanic activity by analyzing fumarolic gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号