共查询到8条相似文献,搜索用时 46 毫秒
1.
开发了一种新型平台桩靴,可通过活动板转动实现自升式平台不同阶段桩靴受力面积的灵活变化。基于大变形有限元方法,模拟新型桩靴基础在“砂-黏”地层中的贯入过程,分析了活动板转角、砂层厚度比、摩擦角和黏土层不排水抗剪强度对新型桩靴贯入阻力的影响,并与普通桩靴的贯入响应比较。数值分析中,上覆砂土和下层黏土分别采用摩尔库伦模型和修正Tresca模型进行模拟。结果表明:新型桩靴穿刺时,土层参数对峰值阻力的影响规律与普通桩靴相同,但其峰值阻力随活动板转角的变化而变化,无法直接使用具有等效面积普通桩靴的穿刺预测方法。考虑各项关键影响因素,结合穿刺破坏时的地基破坏模式,基于数值模拟结果提出了适用于新型桩靴的贯入阻力预测公式。 相似文献
2.
Yinghui Tian Mark J. Cassidy Christophe Gaudin Maozhu Peng 《Marine Georesources & Geotechnology》2013,31(10):1227-1235
AbstractThis paper presents an improved plasticity force-resultant model for anchors deeply embedded in clays, developed from large deformation finite element analyses. The current available force-resultant models for anchors are mainly developed from small strain finite element analysis while experimental approach has not been used due to technical challenges. The advantage of large deformation finite element analysis is that it provides much more data points to fit the yield surface than small strain finite element analysis, in addition to avoiding excess mesh distortion problems. Furthermore, the flow rule or normality can be effectively checked in the large deformation finite element analysis and further used to improve the fitting quality. After validated against retrospective simulations, the better performance of the developed plasticity force-resultant model is demonstrated by comparing with available experimental observations from centrifuge test. 相似文献
3.
Two-Dimensional Large Deformation Finite Element Analysis for the Pulling-up of Plate Anchor 总被引:4,自引:0,他引:4
Based on mesh regeneration and stress interpolation from an old mesh to a new one, a large deformation finite element model is developed for the study of the behaviour of circular plate anchors subjected to uplift loading. For the deterruination of the distributions of stress components across a clay foundation, the Recovery by Equilibrium in Patches is extended to plastic analyses. ABAQUS, a commercial finite element package, is customized and linked into our program so as to keep automatic and efficient running of large deformation calculation. The quality of stress interpolation is testified by evaluations of Tresca stress and nodal reaction forces. The complete pulling-up processes of plate anchors buried in homogeneous clay arc simulated, and typical pulling force-displacement responses of a deep anchor and a shallow anchor are compared. Different from the results of previous studies, large deformation analysis is of the capability of estimating the breakaway between the anchor bottom and soils. For deep anchors, the variation of mobilized uplift resistance with anchor settlement is composed of three stages, and the initial buried depths of anchors affect the separation embedment slightly. The uplift bearing capacity of deep anchors is usually higher than that of shallow anchors. 相似文献
4.
This paper presents an incremental elastoplastic finite element method (FEM) to simulate the undrained deformation process of suction caisson foundations subjected to cyclic loads in soft clays. The method is developed by encoding the total-stress-based bounding surface model proposed by the authors in the ABAQUS software package. According to the model characteristics, elastoplastic stress states associated with the incremental strains of each iteration are determined using the sub-incremental explicit Euler algorithm, and the state parameters describing the cyclic accumulative rates of strains are updated by setting state variables during the calculations. The radial fallback method is also proposed to modify the stress states outside the bounding surface to the surface during determination of the elastoplastic stress states. The stress reversals of soil elements are judged by the angle between the incremental deviatoric stress and the exterior normal vector at the image stress point on the bounding surface to update the mapping centre and state variables during cyclic loading. To assess the general validity of the method, the reduced scale model tests and centrifuge tests of suction caissons subjected to cyclic loads are simulated using the method. Predictions are in relative good agreement with test results. Compared with the limit equilibrium and quasi-static methods, the method can not only determine the cyclic bearing capacity, but can also analyse the deformation process and the failure mechanisms of suction caisson under cyclic loads in soft clays. 相似文献
5.
1 .IntroductionSuctioncaissons have been widely usedfor offshore oil exploration duetothe advantages of econo-my and simple installation over traditional piles (Huanget al .,2003) .For tensionleg platforms andspar platforms in deep ocean,suction caissons … 相似文献
6.
The behaviour of spudcan foundations during the installation and preloading in two-layer sand sediments was investigated through large deformation finite element (LDFE) analyses. The LDFE analyses were carried out using the coupled Eulerian-Lagrangian approach, modifying Mohr-Coulomb soil model to capture hardening and subsequent softening effects of sand. Parametric analyses were undertaken varying the top layer thickness, relative density of sand and spudcan diameter. Both loose to medium dense-over-dense and dense-over-loose to medium dense sand deposits were explored. The results showed that, for the investigated relatively thin top layer thickness of ≤ 5 m, spudcan behaviour was dictated by the bottom sand layer with a minimal influence of the top layer. For assessing the penetration resistance profile in two-layer sands, the performance of the ISO, SNAME, InSafeJIP, and other existing theoretical design methods were evaluated. 相似文献
7.
土钉墙支护是1种经济、安全、可靠的基坑支护型式。采用非线性平面应变有限元方法对土钉墙支护设计进行数值模拟。与传统的极限平衡法相比具有显著优越性。该方法将土钉与岩土介质作为1个系统研究,对十钉支护的作用机理、变形、和土钉墙内的受力进行分析,计算开挖最终阶段的变形量。与工程实例的对比检验,证实该方法的合理性。研究结论对土钉墙支护的设计与施工具有较高的应用价值。 相似文献
8.
Transient Hydroelastic Response of VLFS by FEM with Impedance Boundary Conditions in Time Domain 总被引:1,自引:1,他引:1
A time-dependent finite element method (FEM) is developed to analyze the transient hydroelastie responses of very large floating structures (VLFS) subjected to dynamic loads. The hydrodynamic problem is formulated based on the linear theory of fluid and the structural response is analyzed based on the thin plate theory. The FEM truncates the unbounded fluid domain by introducing an artificial boundary surface, thus defining a finite computational domain. At this boundary surface an impedance boundary conditions are applied so that no wave reflections occur. In the proposed scheme, all of the procedures are processed directly in time domain, which is efficient for nonlinear analyses of structure floating on unbounded fluid. Numerical results indicate acceptable accuracy of the proposed method. 相似文献