首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 4 毫秒
1.
The Great Xing′an and Lesser Xing′an ranges are characterized by immense volumes of Mesozoic granitoids. In this study, we present major and trace element geochemistry, U–Pb geochronology and systematic Sr–Nd–Hf isotopes for the representative samples, in order to constrain their petrogenesis and the tectonic evolution in NE China. The granitoids generally have high SiO2 (66.5–78.8 wt.%) and Na2O + K2O (7.0–8.9 wt.%) contents and belong to high‐K calc‐alkaline to shoshonitic series. All of them show enrichment in Rb, Th, U, Pb and light rare earth elements (LREE), and depletion in Nb, Ta, P and Ti. Zircon U–Pb dating suggests that there was continuous magmatism in both the Great Xing′an Range and the Lesser Xing′an Range during the Jurassic–Early Cretaceous interval. Seven Jurassic granitoids have (87Sr/86Sr)i values of 0.704351 to 0.707374, with ϵNd(t) values of −3.4 to 2.4 and ϵHf(t) values of 0.8 to 11.3, indicating that they originated from mixed sources involving depleted mantle and pre‐existing crustal components. One Early Cretaceous sample yields (87Sr/86Sr)i value of 0.706184, ϵNd(t) value of 0.6, and ϵHf(t) values of 7.0 to 8.2, which is in accordance with previous studies and indicates a major juvenile mantle source for the granitoids in this period. In the Jurassic, the magmatism in the Great Xing′an Range was induced by the subduction of the Mongol–Okhotsk Ocean, while the contemporaneous magmatism in the Lesser Xing′an Range was related to the subduction of the Palaeo‐Pacific Ocean. In the Early Cretaceous, extensive magmatism in NE China was probably attributed to large‐scale lithospheric delamination. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
New geochronological analyses (U–Pb SIMS zircon ages) have yielded ages of 552 ± 5 Ma for the Bou Madine rhyolitic dome (Ougnat, eastern Anti-Atlas), 543 ± 9 Ma for the Tachkakacht rhyolitic dyke (Saghro–Imiter, eastern Anti-Atlas), and 531 ± 5 Ma for the Aghbar trachytic sill (Bou Azzer, central Anti-Atlas). Inherited zircon cores from the Aghbar trachytic sill and from the Bou Madine rhyolitic dome have been shown to be of Statherian age (ca. 1600–1800 Ma) and Palæoproterozoic (>2100 Ma) age, respectively, suggesting that a significantly older protolith underlies the Pan-African rocks in the Central and Eastern Anti-Atlas. Granodiorites and rhyolites from the Saghro–Imiter area have similar low 87Sr/86Sr (0.702–0.706) and 143Nd/144Nd (0.5116–0.5119) initial ratios, suggesting a mixture of mantle and lower crust sources. This can also be inferred from the low 187Os/188Os ratios obtained on pyrite crystals from the rhyolites.A recently published lithostratigraphic framework has been combined with these new geochemical and geochronological data, and those from the literature to produce a new reconstruction of the complex orogenic front that developed at the northern edge of the Eburnian West African craton during Pan-African times. Three Neoproterozoic magmatic series can be distinguished in the Anti-Atlas belt, i.e., high-K calc-alkaline granites, high-K calc-alkaline to shoshonitic rhyolites and andesites, and alkaline-shoshonitic trachytes and syenites, which have been dated at 595–570, 570–545 and 530 Ma, respectively.The accretion of the Pan-African Anti-Atlas belt to the West African super continent (WAC) was a four-stage event, involving extension, subduction, moderate collision and extension. The calc-alkaline magmatism of the subduction stage was associated with large-scale base metal and gold mineralisation. Metallogenic activity was greatest during the final extensional stage, at the Precambrian–Cambrian boundary. It is characterised by world-class precious metal deposits, base–metal porphyry and SEDEX-type occurrences.  相似文献   

3.
The Yangchang granite‐hosted Mo deposit is typical of the Xilamulun metallogenic belt, which is one of the important Mo–Pb–Zn–Ag producers in China. A combination of major and trace element, Sr, Nd and Pb isotope, and zircon U–Pb age data are reported for the Yangchang batholith to constrain its petrogenesis and Mo mineralization. Zircon LA‐ICPMS U–Pb dating yields mean ages of 138 ± 2 and 132 ± 2 Ma for monzogranite and granite porphyry, respectively. The monzogranites and granite porphyries are calc‐alkaline with K2O/Na2O ratios of 0.75–0.92 and 1.75–4.42, respectively. They are all enriched in large‐ion lithophile elements (LILEs) and depleted in high‐field‐strength elements (HFSEs) with negative Nb and Ta anomalies in primitive‐mantle‐normalized trace element diagrams. The monzogranites have relatively high Sr (380–499 ppm) and Y (14–18 ppm) concentrations, and the granite porphyries have lower Sr (31–71 ppm) and Y (5–11 ppm) concentrations than those of monzogranites. The monzogranites and granite porphyries have relatively low initial Sr isotope ratios of 0.704573–0.705627 and 0.704281, respectively, and similar 206Pb/204Pb ratios of 18.75–18.98 and 18.48–18.71, respectively. In contrast, the εNd(t) value (−3.7) of granite porphyry is lower than those of monzogranites (−1.5 to −2.7) with Nd model ages of about 1.0 Ga. These geochemical features suggest that the monzogranite and granite porphyries were derived from juvenile crustal rocks related to subduction of the Paleo‐Pacific plate under east China. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Garnet–clinopyroxene ultra‐high‐pressure (UHP) rocks from the northern Bohemian Massif contain zircon with micro‐diamond inclusions. Trace element concentrations, oxygen and hafnium isotopic composition and U–Pb age of distinct textural domains in zircon characterize their growth conditions and temporal evolution. Diamond‐bearing zircon mantle domains with relicts of oscillatory zoning have uniform Th/U ratios (~0.1–0.2), high‐Ti contents (110–190 ppm, corresponding to temperatures of at least 1100 °C), and some (two of 17 mantle analyses) preserve steep heavy rare earth element (HREE) patterns with YbN/GdN = 10–11, with a weak negative Eu anomaly. These signatures are consistent with crystallization from a melt under UHP/ultra‐high‐temperature (UHT) conditions. Some of the bright‐cathodoluminscence (CL) rims preserve Th/U and Ti values characteristic of the zircon mantles, but others show elevated Th/U ratios of ~0.3–0.4 and lower Ti contents (20–40 ppm; only 13 ppm in a rare low‐CL outer rim). As they feature flat HREE patterns and negative Eu anomalies and commonly make embayments and truncate the mantle zoning, we suggest that they have formed through recrystallization in the solid state during exhumation of the rock, when both garnet and plagioclase were stable. The three zircon domains, that is, cores, mantles and rims, yield U–Pb concordia ages of 340.9 ± 1.5, 340.3 ± 1.5 and 341.2 ± 3.4 Ma respectively. When linked to the previously reconstructed P–T path of the rock, the error limits of the zircon mantle and rim ages constrain the exhumation of the rocks from depth of ~140 km (UHP) to ~80 km (HP) to a minimum rate of 1.5 cm yr?1. The zircon cores are heterogeneous in terms of Th/U ratio (below 0.1 but also above 0.2) and REE characteristics, and their εHf values scatter between ?15.7 and +4.8 with similar values for individual domains within a single zircon grain suggesting a very localized control on hafnium isotope composition on a grain scale. The non‐equilibrated εHf values as well as a large range of the Hf‐depleted mantle model ages possibly reflect the presence of a heterogeneous population of old zircon. Consequently, the uniform and young 238U/206Pb ages may represent (near‐)complete resetting of the U–Pb geochronometer during the UHP–UHT event at c. 340 Ma through dissolution–reprecipitation process. In contrast to Hf, the oxygen isotope composition of zircon is homogeneous, ranging between 7.8‰ and 9.6‰ VSMOW, reflecting a source containing upper crustal material and homogenization at UHP–UHT conditions. Our study documents that continental crust was subducted to mantle depths at c. 340 Ma during the Variscan orogeny and was subsequently very rapidly exhumed, implying that the sequence of events was faster than can be resolved by the secondary ion mass spectrometry technique.  相似文献   

5.
Elemental, Sr–Nd–Pb isotopic and geochronological data are presented for the Taishan high-mg dioritic rocks (western Shandong) from the Eastern Block of the North China Craton in order to better understand the Archean tectonic evolution and crustal growth of the Craton. The rocks gave the zircon U–Pb age of 2536–2540 Ma. They show low SiO2 and Al2O3 contents, high MgO, mg-number, Cr, Ni, Y, Yb, Sr and Ba, enriched LILEs and LREEs, depleted HFSEs and HREEs with (Nb/La)N of 0.07–0.12. They exhibit Nd(t) values of 1.53–3.30, (206Pb/204Pb)i of 11.20–15.30, (207Pb/204Pb)i of 14.14–14.83 and (208Pb/204Pb)I of 31.10–33.93. Such geochemical features with an affinity to both a mantle- and crust-like source for the Taishan dioritic rocks are similar to those of the typical Archean sanukitoids, suggesting an origination from a sub-arc mantle wedge variably metasomatized by the slab-derived dehydration fluids and melts before 50–100 Ma of the emplacement of the Taishan sanukitoid plutons. It is proposed that the Taishan sanukitoids resulted from the sudden change of the downgoing slab from a flat subduction to subsequently steeper subduction in an active continental margin regime during Neoarchean time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号