首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 158 毫秒
1.
介质的弹性常数为三维四阶张量的分量,共有81个,由于应力张量和应变张量的对称性及能量密度是应变的二次函数,一般各向异常性介质的独立弹性常数可减为21个,如果介质具有较高的对称性,独立弹性常数的数目会更少。 对于地壳和上地幔,具有5个独立弹性常数的横向各向同性介质是一个非常好的近似,本研究中横向各向同性介质的对称轴方向可以是任意的(即对称轴可以不平等于铅直方向),在此情况下,需要进行坐标变换,如果已知介质在某一坐标系(其坐标轴平行或垂直于介质的对称轴)中的弹性常数,我们能够容易地利用变换公式得到变换后新坐标系中的弹性常数。 本文提出了一种方案,利用伪谱法既能模拟横向各向同性介质中的平面波,也能模拟点源激发的波场。在勘探地球物理和地震学中,模拟横向各向同性介拮中传播的平面波及区域源产生的波是最重要的研究课题之一。然而在一般各向异性介质中,很难或不可能确定弹性波的相速度和偏振方向,但在横向各向同性介质中,则可以通过坐标变换来实现,这里我们所提出的方法可以用于横向各向同性介质中弹性波的模拟。  相似文献   

2.
介绍一种基于离散粒子理论地震波传播数值模拟的网格剖分计算方法.根据离散粒子理论,将研究区域划分为由一系列相互作用的粒子组成的正六边形网格,这些粒子在它们的接触点处发生相互作用,并用Hooke定律和Newton定律描述.为解决六边形网格带来的网格交错而难以计算以及波场输出问题,将横向网格进行加密,加密处赋予假想的粒子,输出波场时选取偶数行偶数列点或奇数行奇数列点的波场值.均匀介质和层状介质模型的数值模拟结果表明,该网格剖分计算方法能够将离散粒子理论用于模拟弹性波在非均匀各向同性介质中地震波的传播.  相似文献   

3.
二维横各向同性弹性随机介质中的波场特征   总被引:9,自引:4,他引:5  
本文通过交错网格有限差分正演.模拟了平面地震波在二维横各向同性弹性随机介质模型中的传播及其自激自收时间记录.为研究横各向同性弹性随机介质模型中的波场特征,我们在五个不同的时间区段上,分别计算剖面的三个统计特征(横向中心频率、纵向中心频率、波场能量相对值).这样,对应每一个横各向同性弹性随机介质模型.均可计算得到15个不同的波场特征量.我们通过在二维横各向同性弹性随机介质中的正演模拟.研究当自相关长度以及介质的各向异性系数变化时,对应的上述波场特征量的变化特点.证实了在随机介质模型中.各向异性系数的变化会引起波场记录上的某些统计特征的变化,归纳得出了若干结论.  相似文献   

4.
黏弹TTI介质中旋转交错网格高阶有限差分数值模拟   总被引:4,自引:2,他引:2       下载免费PDF全文
严红勇  刘洋 《地球物理学报》2012,55(4):1354-1365
以Carcione黏弹各向异性理论为基础,给出了适用于黏弹性具有任意倾斜对称轴横向各向同性介质(黏弹TTI介质)的二维三分量一阶速度-应力方程,采用旋转交错网格任意偶数阶精度有限差分格式求解该方程,并推导出了二维黏弹TTI介质完全匹配层(PML)吸收边界条件公式和相应的旋转交错网格任意偶数阶精度有限差分格式,实现了该类介质的地震波场数值模拟.数值模拟结果表明:该方法模拟精度高,边界吸收效果好,可以得到高精度的波场快照和合成记录;并且波场快照和合成记录能较好地反映地下介质的各向异性特征和黏弹性特征.  相似文献   

5.
随着多分量采集技术的发展,弹性波逆时偏移技术在三维各向异性介质复杂地质构造成像中得到了广泛的应用.然而耦合的P波场和S波场,会在传播过程中产生串扰噪声,降低弹性波逆时偏移的成像精度.为了解决这一问题,本研究针对具有倾斜各向异性对称轴的三维横向各向同性(Transverse Isotropy, TI)介质,提出了一种矢量弹性波场快速解耦方法,可以有效提高偏移剖面的成像质量.该方法首先通过坐标转换,将观测系统坐标系的垂直轴旋转到TI介质的对称轴方向,在新坐标系下,根据具有垂直对称轴的三维横向各向同性(Vertical Transverse Isotropy, VTI)介质中的分解算子,推导出三维TI介质解耦算子表达式.接着引入一种在空间域快速计算分解波场的方法,来实现空间域矢量P波场和S波场分离,极大地提高了计算效率.最后,通过点积成像条件,将提出的P/S波分解方法引入到三维TI介质弹性波逆时偏移中,得到高精度的PP和PS成像.与以往的波场分解方法相比,本文方法具有数值稳定和计算效率高的特点.数值算例表明,应用上述三维TI分解算子得到的偏移剖面有效压制了噪声,提高了成像质量.  相似文献   

6.
康玮  程玖兵 《地球物理学报》2012,55(3):1033-1045
地下岩石的速度各向异性影响地震波的传播与成像.横向各向同性(TI)介质为最普遍的等效各向异性模型.引入TI介质拟声波方程可以避免复杂的弹性波方程求解以及各向异性介质波场分离,以满足对纵波成像的实际需要.本文从垂直横向各向同性(VTI)介质弹性波方程出发,推导出正应力表达的拟声波方程以及相应的纵波分量的表达式,进而分析从频散关系得到的拟声波方程的物理意义,而后将拟声波方程扩展到更一般的倾斜横向各向同性(TTI)介质中.波前快照与群速度平面的对比验证了拟声波方程可以很好地近似描述qP波的运动学特征.在此基础上,将拟声波方程应用在逆时偏移中并与其特例声波近似方程进行对比,讨论了计算效率、稳定性等实际问题.数值试验表明VTI介质情况下采用声波近似方程可以提高计算效率,而TTI介质qP-qSV波方程则在效率相当的情况下可以保证稳定性.SEG/HESS模型和逆冲模型逆时偏移试验验证了本文TI介质拟声波方程的实用性.  相似文献   

7.
高精度频率域弹性波方程有限差分方法及波场模拟   总被引:18,自引:4,他引:14  
有限差分方法是波场数值模拟的一个重要方法,但常规的有限差分法本身存在着数值频散问题,会降低波场模拟的精度与分辨率,为了克服常规差分算子的数值频散,本文采用25点优化差分算子,再根据最优化理论求取的优化系数,建立了频率空间域中弹性波波动方程的差分格式;为了消除边界反射,引入最佳匹配层,构造了各向同性介质中弹性波方程在不同边界和角点处的边界条件. 最后由弹性波波动方程和边界条件,通过频率域有限差分法,分别利用不同震源对弹性波在均匀各向同性介质、层状介质及凹陷模型中的传播过程进行了数值正演模拟,得到了单频波波场、时间切片和共炮点道集,为下一步的研究工作(如成像、反演)提供了研究基础.  相似文献   

8.
陈可洋 《内陆地震》2011,25(3):215-228
为了便于研究双相介质固流相混合弹性波场中纵横波波场的传播规律,提出了基于交错网格的Biot双相各向同性介质弹性波动方程高精度波场分离正演数值模拟方法.采用高阶交错网格有限差分法来构建一阶双曲型双相各向同性介质弹性波动方程正演算子实现波场正演,并在每一步递推过程中,分别计算出同相和流相分量相应的散度场(纯纵波场)和旋度场...  相似文献   

9.
各向异性介质qP波传播描述I:伪纯模式波动方程   总被引:6,自引:6,他引:0       下载免费PDF全文
程玖兵  康玮  王腾飞 《地球物理学报》2013,56(10):3474-3486
地球介质相对于地震波波长尺度的定向非均匀性会导致波速的各向异性,进而影响地震波场的运动学与动力学特征.各向异性弹性波动方程是描述该类介质波场传播的基本工具,在正演模拟、偏移成像与参数反演中起着关键作用.为了面向实际应用构建灵活、简便的各向异性波场传播算子,人们一直在寻求简化的各向异性波动方程.本文借鉴各向异性弹性波波型分离思想,通过对平面波形式的弹性波方程(即Christoffel方程)实施一种代表向波矢量方向投影的相似变换,推导出了一种适应任意各向异性介质、运动学上与原始弹性波方程完全等价,在动力学上突出qP波的新方程,即qP波伪纯模式波动方程.文中以横向各向同性(TI)介质为例,给出了相应的qP波伪纯模式波动方程及其声学与各向同性近似,并在此基础上开展了正演模拟和逆时偏移试验,展示了这种描述各向异性波场传播的新方程的特点与优势.  相似文献   

10.
波场延拓得到的多分量波场中既包含纵波信息也包含横波信息,能否在全波场中实现纵横波的分离对各向同性和各向异性逆时偏移都有非常重要的意义.传统的散度旋度分离只适应于各向同性介质而对各向异性介质却无效.在非规则、非结构网格的弹性波数值模拟方法的基础上,发展了一种适应于各向异性介质的波场分离方法.该方法通过求解Christoffel方程,得到相角和极化角的关系,再利用群角和相角的关系,直接得到群角和极化角的关系.该方法与现存的各向异性波场分离相比,获得的计算效率改进更显著,而且存储量小.用简单各向异性模型和SEG各向异性Hess模型进行测试,都得到了较好的效果,证明了本文方法的有效性.  相似文献   

11.
In the realm of the numerical simulation, finite difference method and finite element method are more intuitive and effective than other simulation methods. In the process of simulating seismic wave propagation, the finite differences method is widely used because of its high computational efficiency and the advantage of the algorithm is more efficient. With the demand of precision, more and more researchers have proposed more effective methods of finite differences, such as the high-order staggered-grid finite differences method, which can restore the actual process of wave propagation on the premise of ensuring accuracy and improving the efficiency of operation. In the past numerical simulation of seismic wave field, different models of isotropic medium are mostly used, but it is difficult to reflect the true layer situation. With the research demand of natural seismology and seismic exploration, the research on anisotropic media is more and more extensive. Transversely isotropic(TI)media can well simulate the seismic wave propagation in the formation medium, such as gas-bearing sandstone, mudstone, shale et al., the character of TI media is reflected by introducing the Thomsen parameters to reflect its weak anisotropy of vertical direction by using Thomson parameter. Therefore, studying the process of seismic wave propagation in TI media can restore the true information of the formation to the greatest extent, and provide a more reliable simulation basis for the numerical simulation of seismic wave propagation. In the geodynamic simulation and the numerical simulation of the seismic wave field, under the limited influence of the calculation area, if no boundary conditions are added, a strong artificial boundary reflection will be generated, which greatly reduces the validity of the simulation. In order to minimize the influence of model boundaries on the reflection of seismic waves, it is often necessary to introduce absorbing boundary conditions. At present, there are three types of absorption boundary conditions: one-way wave absorption boundary, attenuation absorption boundary, and perfectly matched layer(PML)absorption boundary. In terms of numerical simulation of seismic waves, the boundary absorption effect of PML is stronger than the first two, which is currently the most commonly used method, and it also represents the cutting-edge development direction of absorption boundary technology. The perfectly matched layer absorbing boundary is effectively applied to eliminating the reflective waves from model boundaries, but for transversely isotropic medium, the effect of the absorbing is not very well. For this reason, the elastic dynamic wave equations in transversely isotropic media are derived, and we describe a second-order accurate time, tenth-order accurate space, formulation of the Madariaga-Virieux staggered-grid finite difference methods with the perfectly matched layer(PML)are given. In addition, we have established vertical transversely isotropic(VTI)media and arbitrary inclined tilted transversely isotropic(TTI)media models, using a uniform half-space velocity model and a two-layer velocity model, respectively. By combining the actual geoscience background, we set the corresponding parameters and simulation conditions in order to make our model more research-oriented. When setting model parameters, different PML thickness, incident angle, source frequency and velocity layer models were transformed to verify the inhibition of boundary reflection effect by PML absorption boundary layer. The implementations of this simulation show that the formula is correct and for the transversely isotropic(TI)media of any angular symmetry axis, when the thickness of the PML layer reaches a certain value, the seismic wave reflection effect generated by the artificial boundary can be well suppressed, and the absorption effect of PML is not subject to changes in incident angle and wave frequency. Therefore, the results of our study indicate that our research method can be used to simulate the propagation process of seismic waves in the transversely isotropic(TI)media without being affected by the reflected waves at the model boundary to restore the actual formation information and more valuable geological research.  相似文献   

12.
The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE 1 and RG 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.  相似文献   

13.
In an acoustic transversely isotropic medium, there are two waves that propagate. One is the P-wave and another one is the S-wave (also known as S-wave artefact). This paper is devoted to analyse the S-wave in two-dimensional acoustic transversely isotropic media with a tilted symmetry axis. We derive the S-wave slowness surface and traveltime function in a homogeneous acoustic transversely isotropic medium with a tilted symmetry axis. The S-wave traveltime approximations in acoustic transversely isotropic media with a tilted symmetry axis can be mapped from the counterparts for acoustic transversely isotropic media with a vertical symmetry axis. We consider a layered two-dimensional acoustic transversely isotropic medium with a tilted symmetry axis to analyse the S-wave moveout. We also illustrate the behaviour of the moveout for reflected S-wave and converted waves.  相似文献   

14.
A transversely isotropic material in the sense of Green is considered. Using a series of potential functions proposed in [Eskandari-Ghadi M. A complete solution of the wave equations for transversely isotropic media. J Elasticity 2005; 81:1–19], the solutions of the transient wave equations within a half-space under surface load are obtained in the Laplace–Hankel domain for axisymmetric problems. The solutions are investigated in detail in the special case of a surface point force pulse varying with time as Heaviside function. Using Cagniard–De Hoop method, the inverse Laplace transform and inverse Hankel transform of the solutions are then obtained in the form of integrals with finite limits. For validity of the analytical results, the final formulations for surface waves are degenerated for an isotropic material and compared with the existing formulation obtained by Pekeris [The seismic surface pulse. Proc Natl Acad Sci USA 1955;41:469–80], to show that they are exactly the same. The numerical evaluations of the integrals for some transversely isotropic materials as well as an isotropic one are obtained. The present approach is then numerically verified by comparing a particular case of displacements for the surface of an isotropic half-space subjected to a point load of Heaviside function with the solutions obtained by Pekeris [The seismic surface pulse. Proc Natl Acad Sci USA 1955;41:469–80]. In addition, the wave equations for the mentioned medium are obtained on the vertical line directly under the applied surface load. The final formulations are degenerated for an isotropic material and compared with the existing formulation given in Graff [Wave motion in elastic solids. New York: Dover Publications Inc; 1975 [New Ed edition, November 1991]], to show that they are also exactly the same. Then equations are presented in graphical forms using an appropriate numerical evaluation.  相似文献   

15.
Waves propagating through a sequence of layers that are thin compared with the wavelength show effects of anisotropy: velocity and displacement direction depend on the angle between the plane of layering and the wave normal, and shear waves split up into two distinct types of different velocity. The layered medium can thus be replaced by a transversely isotrophic medium the parameters of which depend on the parameters of the individual constituent layers. A survey of the anisotropy effects possible in such a medium is generally done by varying the layer parameters in order to obtain different replacement media. This approach guarantees that the replacement medium is realistic, but it does not guarantee adequate sampling of the set of replacement media. To this end one has to begin by selecting the replacement media and then check whether the chosen media possess stable (and eventually realistic) representations by layer sequences. In general, there is an infinite number of layer representations for any transversely isotropic medium that can at all be represented. However, if one restricts the solutions to those requiring the minimal number of layers and the minimum number of different layer parameters, the set of solutions has only one free parameter (i.e., it is a one-dimensional manifold), and an important subset even has a unique solution. A simple algorithm exists for the determination of these “simplest representations”. Aside from sampling the set of representable transversely isotropic media for survey purposes, the method can be applied to the problem of determining the cause of observed anisotropy effects (or lateral changes in such effects). If this method can be applied to real data, it would for instance allow to determine changes in relative thickness or lithology on a scale smaller than the limit of resolution of the seismic method.  相似文献   

16.
横观各向同性层状半空间中的弹性位错   总被引:1,自引:0,他引:1  
本文在柱向量函数系下,利用传播矩阵法求解了层状横观各向同性半空间由内部点源位锚引起的变形;对六个基本点源位错,以等价体力法推出了横观各向同性情形下的点源函数,并且给出了内部任意剪切位错源引起的地表位移的积分表达式。为研究地球的层状结构,特别是其上部的横观各向同性对地表的地震位移、应变以及倾斜场的影响提供了计算公式。  相似文献   

17.
Certain crack-influence parameters of Sayers and Kachanov are shown to be directly related to Thomsen's weak-anisotropy seismic parameters for fractured reservoirs when the crack/fracture density is small enough. These results are then applied to the problem of seismic wave propagation in polar reservoirs, i.e., those anisotropic reservoirs having two axes that are equivalent but distinct from the third axis), especially for horizontal transversely isotropic seismic wave symmetry due to the presence of aligned vertical fractures and resulting in azimuthal seismic wave symmetry at the Earth's surface. The approach presented suggests one method of inverting for fracture density from wave speed data. A significant fraction of the technical effort in the paper is devoted to showing how to predict the angular location of the true peak (or trough) of the quasi-SV-wave for polar media and especially how this peak is related to another angle that is very easy to compute. The axis of symmetry is always treated here as the x 3-axis for either vertical transversely isotropic symmetry (due, for example, to horizontal cracks), or horizontal transversely isotropic symmetry (due to aligned vertical cracks). Then, the meaning of the stiffnesses is derived from the fracture analysis in the same way for vertical transversely isotropic and horizontal transversely isotropic media, but for horizontal transverse isotropy the wave speeds relative to the Earth's surface are shifted by  90o  in the plane perpendicular to the aligned vertical fractures. Skempton's poroelastic coefficient B is used as a general means of quantifying the effects of fluids inside the fractures. Explicit Biot-Gassmann-consistent formulas for Thomsen's parameters are also obtained for either drained or undrained fractures resulting in either vertical transversely isotropic or horizontal transversely isotropic symmetry of the reservoir.  相似文献   

18.
Analysing S-wave splitting has become a routine step in processing multicomponent data. Typically, this analysis leads to determining the principal directions of a transversely isotropic medium with a horizontal symmetry axis, which is assumed to be responsible for azimuthal anisotropy, and to the time delays between the fast and slow S-waves. These parameters are commonly estimated layer-by-layer from the top. Errors in layer stripping occurring in shallow layers might propagate to deeper layers. We propose a method for S-wave splitting analysis and compensation that consists of inverting interval values of splitting intensity to obtain a model of anisotropic parameters that vary with time and/or depth. Splitting intensity is a robust attribute with respect to structural variations and is commutative, which means that it can be summed along a ray (or throughout a sensitivity kernel volume) and can be linearly related to anisotropic perturbations at depth. Therefore, it is possible to estimate anisotropic properties within a geological formation (e.g. the reservoir) by analysing the differences of splitting intensity measured at the top and at the bottom of the layer. This allows us to avoid layer stripping, in particular, for shallow layers where anisotropic parameters are difficult to estimate due to poor coverage, and it makes S-wave splitting analysis simpler to apply. We demonstrate this method on synthetic and real data. Because the splitting intensity attribute shows usefulness in S-wave splitting analysis in transversely isotropic media, we extend the splitting intensity theory to lower symmetry classes. It enables the characterization of tilted transversely isotropic and tilted orthorhombic media, opening new opportunities for anisotropic model building.  相似文献   

19.
Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号