首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过速度势的特征展开方法,建立垂直圆柱对波浪绕射的解析解,得到作用在柱体上的波浪力计算表达式,通过谐波增量平衡法(IHB法),计算研究弹性双柱相对位置对双柱振动响应的影响。设计了弹性双柱体模型试验,数值结果与模型试验结果较吻合,为海洋工程结构振动设计提供一种解决方法。  相似文献   

2.
A simple model is developed to study the inception of sheet flow in oscillatory flow based on the available experimental data. The inception of sheet flow in oscillatory flow is well defined by the simple model: A/d=KA2ω/ν+B, where A is the semi-excursion of wave orbital motion near the bed, d is the grain size, ω is the angular frequency, ν is the kinematic viscosity of water, and K and B are the coefficients and dependent on sediment properties only. The inception velocity of sheet flow derived from the model is shown to be the function of grain size d, oscillatory period T and specific sediment density s. For a given sediment, the inception velocity is found to increase sharply initially with T and then approach a constant at T>6.0 s. The present model is quite simple and gives good agreement with the available experimental data.  相似文献   

3.
4.
Steady streaming around a circular cylinder in an oscillatory flow   总被引:1,自引:0,他引:1  
Steady streaming induced by an oscillatory flow around a circular cylinder is investigated using a numerical method. Two-dimensional Reynolds-averaged Navier-Stokes equations are solved using a finite element method with a k-ω turbulent model closure. The range of the Keulegan-Carpenter (KC) number investigated is between 2 and 40, which is substantially higher than those reported in literature related to steady streaming to date. A constant value of Stokes number (β) of 196 is chosen in this study. The steady streaming structures and velocity distribution are analysed in detail. It is found that the characteristics of steady streaming are strongly related to the vortex shedding flow regimes.  相似文献   

5.
低雷诺数下圆柱涡激振动的二维有限元数值模拟   总被引:2,自引:0,他引:2  
采用有限元方法求解原始变量的二维不可压粘性流体的N-S方程,计算了雷诺数从90到150范围内圆柱绕流引起的涡激振动,完整地再现了流固耦合系统从不共振到频率锁定,再到脱离锁定的过程,成功地预测到了涡激振动的“拍”和“锁定”现象,并与A nagnostopou los和B earam an的试验结果进行了比较。计算涡激振动时用ALE方法分析圆柱和流体的耦合作用,圆柱振动被简化为质量-弹簧-阻尼系统。  相似文献   

6.
Near-bed oscillatory flows with acceleration skewness are characteristic of steep and breaking waves in shallow water. In order to isolate the effects of acceleration skewness on sheet flow sand transport, new experiments are carried out in the Aberdeen Oscillatory Flow Tunnel. The experiments have produced a dataset of net transport rates for full-scale oscillatory flows with varying degrees of acceleration skewness and three sand sizes. The new data confirm previous research that net transport in acceleration-skewed flow is non-zero, is always in the direction of the largest acceleration and increases with increasing acceleration skewness. Large transport rates for the fine sand conditions suggest that phase lag effects play an important role in augmenting positive net transport. A comparison of the new experimental data with a number of practical sand transport formulations that incorporate acceleration skewness shows that none of the formulations performs well in predicting the measured net transport rates for both the fine and the coarser sands. The new experimental data can be used to further develop practical sand transport formulations to better account for acceleration skewness.  相似文献   

7.
Forces on a circular cylinder have been measured with nominally two-dimensional current and oscillatory flow at right angles. Previous results for purely oscillatory flow defined by a Keulegan-Carpenter number, Kc, have been extended for reduced velocities, Vr, in the range 3–10. For Kc<7 modification of the Karman street by oscillation is complex and locking-on has a dominant influence. For Kc > 7 simply adding forces due to the current and oscillation as though in isolation generally gives conservative results. The ‘current’ drag shows considerable variation and can even be negative. The Morison fit to the in-line force is generally less satisfactory when there is a current and can be wholly inadequate.  相似文献   

8.
The dimensions of sand ripples in full-scale oscillatory flows   总被引:1,自引:0,他引:1  
New large-scale experiments have been carried out in two oscillatory flow tunnels to study ripple regime sand suspension and net sand transport processes in full-scale oscillatory flows. The paper focuses on ripple dimensions and the new data are combined with existing data to make a large dataset of ripple heights and lengths for flows with field-scale amplitudes and periods. A feature of the new experiments is a focus on the effect of flow irregularity. The combined dataset is analysed to examine the range of hydraulic conditions under which oscillatory flow ripples occur, to examine the effects of flow irregularity and ripple three-dimensionality on ripple dimensions and to test and improve existing methods for predicting ripple dimensions.The following are the main conclusions. (1) The highest velocities in a flow time-series play an important role in determining the type of bedform occurring in oscillatory flow. Bedform regime is well characterised by mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth peak velocities in the case of irregular flow. (2) For field-scale flows, sand size is the primary factor determining whether equilibrium ripples will be 2D or 3D. 2D ripples occur when the sand D50 ≥ 0.30 mm and 3D ripples occur when D50 ≤ 0.22 mm (except when the flow orbital diameter is low). (3) Ripple type (2D or 3D) is the same for regular and irregular flows and ripple dimensions produced by equivalent regular and irregular flows follow a similar functional dependence on mobility number, with mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth velocities in the case of irregular flow. For much of the ripple regime, ripple dimensions have weak dependency on mobility number and ripple dimensions are similar for regular and irregular flows with the same flow orbital amplitude. However, differences in ripples produced by equivalent regular and irregular flows become significant at the high mobility end of the ripple regime. (4) Ripple dimensions predicted using the Wiberg and Harris formulae are in poor agreement with measured ripple dimensions from the large-scale experiments. Predictions based on the Mogridge et al. and the Nielsen formulae show better overall agreement with the data but also show systematic differences in cases of 3D ripples and ripples generated by irregular flows. (5) Based on the combined large-scale data, modifications to the Nielsen ripple dimension equations are proposed for the heights and lengths of 2D ripples. The same equations apply to regular and irregular flows, but with mobility number appropriately defined. 3D ripples are generally smaller than 2D ripples and estimates of 3D ripple height and length may be obtained by applying multipliers of 0.55 and 0.73 respectively to the 2D formulae. The proposed modified Nielsen formulae provide an improved fit to the large-scale data, accounting for flow irregularity and ripple three-dimensionality.  相似文献   

9.
In-line force on a cylinder translating in oscillatory flow   总被引:2,自引:0,他引:2  
Experiments were conducted with smooth and sand-roughened cylinders moving with constant velocity in a sinusoidally oscillating flow to determine the drag and inertia coefficients and to examine the effect of wake biasing on the modified Morison equation. The various flow parameters such as the relative cylinder velocity. Reynolds number, and the Keulegan-Carpenter number were varied systematically and the in-line force measured simultaneously. The principal results, equally valid for both smooth and rough cylinders, are as follows: the drag coefficient decreases with increasing relative current for a given Reynolds number and Keulegan-Carpenter number; the effect of wake biasing on the drag and inertia coefficients is most pronounced in the drag-inertia dominated regime; and the two-term Morison equation with force coefficients obtained under no-current conditions is not applicable to the prediction of wave and current induced loads on circular cylinders.  相似文献   

10.
The most widely used mathematical model to represent flow-induced in-line forces on structures is based on the Morison1 equation. The present paper investigates the validity of using an extension of Morison's equation for non-stationary structures, by comparing predictions with results from a simple laboratory experiment. An elastically-mounted circular cylinder is placed in the sinusoidal flow of a U-tube, and responds in-line with the flow. Cylinder forces and responses are recorded over a range of Keulegan Carpenter numbers up to 35. An equation of motion is solved simply by using relative coordinates and by employing equivalent linearisation. The linear results are compared over a wide variation of parameters with solutions using the full nonlinear equation. Thereafter experimental results are compared with linear predictions.  相似文献   

11.
不同倒角半径下方柱绕流的数值模拟及水动力特性研究   总被引:1,自引:0,他引:1  
为了研究不同倒角半径对方柱绕流特性的影响,采用有限体积法,模拟了雷诺数Re为22 500、倒角半径为0.1D(D为方柱边长的长度)、0.2D和0.3D时方柱的绕流过程。方柱近壁面采用增强壁面函数,模型采用SST k–?湍流模型。根据模拟结果给出了不同倒角半径下方柱的流场涡量图以及阻力系数Cd和升力系数Cl;利用快速傅里叶变换法得到斯托罗哈数St。结果表明,倒角半径的增加改变了方柱的分离点,使得尾流区长度增加,旋涡尺度减小;Cd和Cl的振动幅值呈现先减小后增大的趋势,倒角半径为0.1D和0.2D时方柱受力较小,不存在倒角时方柱受力较大,倒角半径为0.3D时方柱受力最大;随着倒角半径的增加,柱体截面形式越接近圆形,斯托罗哈数逐渐增大,漩涡脱落频率更快。  相似文献   

12.
圆柱绕流作为流体力学领域中的经典问题,近年来得到了广泛的关注和研究。开展振荡流下二维圆柱的水动力特性和漩涡发放形态研究将为认识和理解圆柱绕流特性提供重要参考。基于RANS方程,采用k-ωSST湍流模型,首先通过对比雷诺数10 000时均匀流下的受迫振动试验数据,验证了研究方法的可行性,进而开展了振荡流下圆柱绕流的数值模拟,对比讨论了5种KC数下流体力系数变化情况及漩涡脱落模式,并开展了升力系数时历分析。结果表明:在低振幅、低频率下,小KC数时激励力系数变化较大,大KC数时流态趋向于均匀流,激励力系数变化较小。在大KC数时可以观察到较为明显的2S脱落模式,升力系数在每一周期内出现两次振幅调制现象,小KC数时流体变化较快,规律性相对较弱。  相似文献   

13.
An evaluation of four well-known Reynolds-Averaged Navier-Stokes (RANS)-based turbulence models was performed in comparison with the results of a dedicated experimental measurement on the near-wake of a circular cylinder in a large water (cavitation) tunnel using a state-of-the-art two-dimensional Digital Particle Image Velocimetry (DPIV) device.The turbulence models investigated were Spalart-Allmaras (S-A), Realizable k-ε (RKE), Wilcox k-ω (WKO) and Shear-Stress-Transport k-ω (SST), which were assessed based on their comparative performances in predicting some important flow field characteristics of the near-wake region of the experimental circular cylinder flow. Within the flow range investigated in this study, which implied a cylinder diameter-based Reynolds Number of 41,300, the qualitative and quantitative comparisons revealed that the application of the SST model to the wall-bounded unsteady flow - that experienced severe adverse pressure gradient, massive flow separation and vortex shedding - presents more successful predictions compared to other models investigated for such challenging flow conditions.  相似文献   

14.
为研究四柱体布置情况下倒角半径变化对柱体绕流水动力特性的影响,使用Fluent软件,采用大涡模拟方法研究了在雷诺数Re=3 900下6种不同倒角半径的柱体在方形四柱体布置时的三维流场。在模型分析验证有效后,分析了柱体后方瞬时流场、水动力参数、时均流场的变化情况。分析结果表明:随着倒角半径的增大,上游柱体的平均阻力系数逐渐减小,下游柱体的平均阻力系数除了在R~+=0.1处增幅很大以外,其余均随倒角半径变大而平稳变大;各柱体的升力系数均方根变化趋势基本相同;R~+=0.1、0.5时,上下游两柱体的升力系数曲线相位相反,而在R~+=0.2、0.3和0.4时,上下游两柱体的升力系数曲线相位相同。  相似文献   

15.
利用计算流体力学软件Fluent开展了三维动波浪壁圆柱绕流的数值模拟,建立了三维运动波浪壁圆柱模型,通过C语言自编程序实现波浪壁面的运动控制,并保证壁面变形时网格的高质量。在来流速度u=0.125 m/s、雷诺数Re=12 500的情况下,开展了动波浪壁波动速度w=0、0.062 5、0.125、0.187 5 m/s四个工况的计算分析,并比较了不同波动速度对流场结构、升力、阻力特性的影响。结果表明:动波浪壁圆柱能有效抑制流动的分离,消除交替脱落的尾涡,从而消除周期振荡的升力;在消除卡门涡街的同时,圆柱后驻点处的涡量值随波动速度增加而增加,其原因在于波形移动加大了壁面流体的速度,从而减小了圆柱前后的压力差,减小了阻力;随着波动速度的增大,平均阻力系数呈明显下降趋势,当波动速度为来流速度的1.5倍时,平均阻力系数相对于光滑圆柱下降了53.76%。  相似文献   

16.
A series of flow induced vibration (FIV) experiments for an equilateral triangle prism elastically mounted in a water channel are performed with different system stiffness at constant damping and mass. An amplitude variation coefficient is proposed to describe FIV stationarity in the present study. The FIV of the prism can be divided into three primary regions based on the amplitude and frequency responses, which are the vortex induced vibration (VIV) branch, the transition branch from VIV to galloping, and the galloping branch. The transition branch occurs at the reduced velocity in the range of 7.8 < Ur = U/(fn,air·D) < 10.4, accompanied with a relatively rapid increase in amplitude and a precipitous drop in frequency and vibration stationarity. In addition, the reduced velocity where the transition region is initiated is independent of the system stiffness. The maximum amplitude reaches 3.17 D in the galloping branch. The ratio of the response frequency to the natural frequency of the prism in air remains locked to approximately 0.65 throughout the fully developed galloping branch. Large amplitude responses in an infinite range of flow velocities, excellent vibration stationarity and steady vibration frequencies, which are characteristics of the galloping of the prism, have a positive impact on improving energy conversion.  相似文献   

17.
非均匀流中立管涡激振动模型预测分析   总被引:1,自引:0,他引:1  
文中分析了非均匀流中,张紧式海洋立管的涡激振动,采用新的加速度耦合尾流振子模型作为预测细长海洋工程柔性结构的计算工具,将预测结果中的横向位移包络线及最大幅值与实验观测值、shear7软件计算值进行了对比,可以发现模型的计算结果与实验观测结果吻合得很好.  相似文献   

18.
The behavior of vortex-induced vibration of a two-degree-of-freedom cylinder near a deformable wall in steady flow is investigated experimentally.The typical phenomenon of the two-degree-of-freedom cylinder’s VIV is discussed.The influences of initial gap between the cylinder and the wall on the dynamic responses of the cylinder are analyzed.The comparison is made about dynamic responses of the cylinder with one and two degrees of freedom.Experimental results show that the vibration of the cylinder near a deformable wall with a small value of initial gap-to-diameter ratios can generally be divided into two phases.The initial gap-to-diameter ratios have a noticeable influence on the occurrence of transverse vibration.The transverse maximum amplitude of the cylinder with two degrees of freedom is larger than that of the cylinder with one degree of freedom under the condition with the same values of other parameters.However,the vibration frequency of the cylinder for the two degrees of freedom case is smaller than that for the one degree of freedom case at the same value of Vr number.  相似文献   

19.
Investigated in this study is the flow-induced vibration of a nonlinearly restrained curved pipe conveying fluid. The nonlinear equation of motion is derived by equilibrium of forces on microelement of the system under consideration. The spatial coordinate of the system is discretized by DQM (differential quadrature method). On the basis of the boundary conditions, the dynamic equation is solved by the Newton-Raphson iteration method. The numerical solutions reveal several complex dynamic motions for the variation of the fluid velocity parameter, such as limit cycle motion, buckling and so on. The result obtained also shows that the sub parameter regions corresponding to the several motions may change with the variation of some parameters of the curved pipe. The present study supplies a new reference for investigating the nonlinear dynamic response of some other structures.  相似文献   

20.
基于粒子图像测速技术(PIV)对小间距比比L/D=1.5工况下方形布置四圆柱在不同来流角角α(α=0°、15°、30°、45°)条件下的尾流流场特性进行了试验研究,分析了不同来流角度条件下四圆柱瞬时和时均尾流流场特征,获得了瞬时和时均速度矢量、涡量等值线、流线拓扑及雷诺应力分布随来流角度变化的规律。试验结果表明,来流角度对方形布置四圆柱尾流形态有显著影响。四圆柱瞬时尾流形态随来流角度增大可分为延伸体流动流态(α=0°)、尾流剪切层附着流态(α=15°、30°)及尾流剪切层共同脱落流态(α=45°)三种流态。当来流角度增大时,四圆柱下游断面平均流向速度分布由"W"形向"U"形转变,时均雷诺正应力及雷诺剪切应力等值线分布特征也会发生明显改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号