首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Carbonates in a 30 cm wide zoned kimberlite dyke from the De Beers Mine, Kimberley, S. Africa were studied by cathodoluminescence and electron microprobe techniques and their 87Sr/86Sr ratios were measured using an AEI-IM20 ion microprobe. Primary carbonates (including calcite dendrites, rhombohedral calcites in segregation vesicles and mosaic dolomite) have high Sr (0.69–1.35 wt.% SrO) and Ba (0.24–0.44% BaO) and 87Sr/86Sr ratios in the range 0.7046 to 0.7056. Secondary sparry calcite in amygdales and veins is characterised by low Ba (<0.05% BaO) and 87Sr/86Sr near 0.72. Rhombohedral calcite 0.5 cm from a contact with 2,900 my. old biotite-gneiss has minor element chemistry like that of primary carbonate, but an elevated 87Sr/86Sr ratio of 0.7103, possibly indicating crustal contamination in a boundary layer of the kimberlite magma. Amygdale-like segregations of carbonate and/or serpentine originated as gas-cavities and were not formed by liquid immiscibility. They are now filled either by secondary calcite or by minerals precipitated from residual kimberlite liquid. However, dendritic calcite and primary dolomite and calcite with high Sr, Ba and low 87Sr/86Sr demonstrate shared chemical characteristics between these carbonates and carbonatite. The primary kimberlite magma had initial 87Sr/86Sr close to 0.7046.  相似文献   

2.
Strontium isotopic studies of kimberlites reveal no significant differences between the respective whole-rock Sr87/Sr86 ratios of fissure and pipe kimberlites. Kimberlites from the Swartruggens fissure (calcareous micaceous kimberlite) have Sr87/Sr86 ratios of from 0.709 to 0.716, whilst those from the Wesselton pipe have Sr87/Sr86 ratios of from 0.708 to 0.715. Other kimberlites range from 0.706 to 0.715. Samples are considered to be late Cretaceous to early Tertiary and thus the ratios are approximately initial ratios. The Sr87/Sr86 ratios bear no relation to the Rb or Sr content of individual kimberlite bodies. The high initial ratios are not due to bulk assimilation of granitic material in either a kimberlite or carbonatitic magma. Rb-Sr data for garnet peridotites and eclogite xenoliths in kimberlite are not compatible with production of kimberlite by eclogite fractionation from a melt derived from garnet lherzolite. The Sr isotopic composition of kimberlite is compatible with partial melting of garnet mica peridotite. The isotopic composition of liquids formed by partial melting of this rock can be modified by (i) gross contamination with material of low Sr87/Sr86 ratio or (ii) selective diffusion of material of high Sr87/Sr86 ratio into kimberlitic fluids.  相似文献   

3.

The Nxau Nxau kimberlites in northwest Botswana belong to the Xaudum kimberlite province that also includes the Sikereti, Kaudom and Gura kimberlite clusters in north-east Namibia. The Nxau Nxau kimberlites lie on the southernmost extension of the Congo Craton, which incorporates part of the Damara Orogenic Belt on its margin. The Xaudum kimberlite province is geographically isolated from other known clusters but occurs within the limits of the NW-SE oriented, Karoo-aged Okavango Dyke Swarm and near NE-SW faults interpreted as the early stages of the East African Rift System. Petrographic, geochronological and isotopic studies were undertaken to characterise the nature of these kimberlites and the timing of their emplacement. The Nxau Nxau kimberlites exhibit groundmass textures, mineral phases and Sr-isotope compositions (87Sr/86Sri of 0.7036 ± 0.0002; 2σ) that are characteristic of archetypal (Group I) kimberlites. U-Pb perovskite, 40Ar/39Ar phlogopite and Rb-Sr phlogopite ages indicate that the kimberlites were emplaced in the Cretaceous, with perovskite from four samples yielding a preferred weighted average U-Pb age of 84 ± 4 Ma (2σ). This age is typical of many kimberlites in southern Africa, indicating that the Xaudum occurrences form part of this widespread Late Cretaceous kimberlite magmatic province. This time marks a significant period of tectonic stress reorganisation that could have provided the trigger for kimberlite magmatism. In this regard, the Nxau Nxau kimberlites may form part of a NE-SW oriented trend such as the Lucapa corridor, with implications for further undiscovered kimberlites along this corridor.

  相似文献   

4.
Groundmass perovskite has been dated by LA-ICPMS in 135 kimberlites and related rocks from 110 localities across southern Africa. Sr and/or Nd isotopes have been analysed by LA-MC-ICPMS in a subset of these and integrated with published data. The age distribution shows peaks at 1,600–1,800, 1,000–1,200, 500–800 and 50–130 Ma. The major “bloom” of Group I kimberlites at ca 90 ± 10 Ma was preceded by a slow build-up in magmatic activity from ca 180 Ma. The main pulse of Group II kimberlites at 120–130 Ma was a distinct episode within this build-up. Comparison of the isotopic data with seismic tomography images suggests that metasomatized subcontinental lithospheric mantle (SCLM) with very low ε Nd and high 87Sr/86Sr, (the isotopic signature of Group II kimberlites) was focused in low-Vs zones along translithospheric structures. Such metasomatized zones existed as early as 1,800 Ma, but were only sporadically tapped until the magmatic build-up began at ca 180 Ma, and contributed little to the kimberlitic magmas after ca 110 Ma. We suggest that these metasomatized volumes resided in the deep SCLM and that their low-melting point components were “burned off” by rising temperatures, presumably during an asthenospheric upwelling that led to SCLM thinning and a rise in the ambient geotherm between 120 and 90 Ma. The younger Group I kimberlites therefore rarely interacted with such SCLM, but had improved access to shallower volumes of differently metasomatized, ancient SCLM with low 87Sr/86Sr and intermediate ε Nd (0–5). The kimberlite compositions therefore reflect the evolution of the SCLM of southern Africa, with metasomatic-enrichment events from as early as 1.8 Ga, through a major thermal and compositional change at ca 110 Ma, and the major kimberlite “bloom” around 90 Ma.  相似文献   

5.
Minor magmatic intrusions of kimberlite, melilitite and cpx-melilitite occur in the southern part of the Kola Peninsula, Russia, on the Terskii Coast and near the town of Kandalaksha. They yield K-Ar ages of 382 ± 14 Ma and 365 ± 16 Ma, similar to the magmatic rocks from the Kola Alkaline Province. The Terskii Coast kimberlites have mineralogical and geochemical affinities with group 1 kimberlites, whereas the Kandalaksha monticellite kimberlite more closely resembles calcite kimberlites. The lower Al2O3 content in the Kola kimberlites indicates a strongly depleted harzburgitic source, while higher Al2O3 in the melilitites suggests a lherzolitic source. The Terskii Coast kimberlites are anomalously potassic and significantly enriched in P and Ba compared to other group 1 kimberlites. In contrast, the melilitites are sodic and are anomalously depleted in P compared to worldwide melilitites. Trace element patterns of the Kola kimberlites and melilitites indicate the presence of K- and P-rich phases in the mantle source. To account for the K-troughs shown by both magma types, a K-rich phase such as phlogopite is thought to be residual in their sources; however, the anomalous K-enrichment in the Terskii Coast kimberlites may indicate that an additional metasomatic K-rich phase (e.g. K-richterite and/or a complex K-Ba-phosphate) existed in the kimberlite source. The P-depletion in the melilitites may suggest that a phosphate phase such as apatite remained residual in the melilititic source. However, anomalous P-enrichment in the kimberlites cannot be explained by complete melting of the same phase because the kimberlites are a smaller degree melt; thus, it is most likely that another metasomatic phosphate mineral existed in the source of the kimberlites. The Kola kimberlites and melilitites are all strongly LREE-enriched but the kimberlites have a steeper REE pattern and are significantly more depleted in HREE, indicating a higher proportion of garnet in their source. Higher Nb/Y ratios and lower SiO2 values in the kimberlites indicate that they were a smaller degree partial melt than the melilitites. The presence of diamonds in the Terskii Coast kimberlites indicates a relatively deep origin, while the melilitites originated from shallower depth. The non-diamondiferous Kandalaksha monticellite kimberlite has lower abundances of all incompatible trace elements, suggesting a higher degree of partial melting and/or a less enriched and shallower source than the Terskii Coast kimberlites. The 87Sr/86Sri, 143Nd/144Ndi and Pb isotope compositions confirm that the Terskii Coast kimberlites have close affinities with group 1 kimberlites and were derived from an asthenospheric mantle source, while the Kandalaksha monticellite kimberlite and Terskii Coast melilitites were derived from lithospheric mantle. Impact of a Devonian asthenospheric mantle plume on the base of the Archaean-Proterozoic lithosphere of the Kola Peninsula caused widespread emplacement of kimberlites, melilitites, ultramafic lamprophyres and other more fractionated alkaline magmas. The nature of the mantle affected by metasomatism associated with the plume and, in particular, the depth of melting and the stability of the metasomatic phases, gave rise to the observed differences between kimberlites and the related melilitites and other magmas. Received: 3 March 1997 / Accepted: 7 October 1997  相似文献   

6.
《地学前缘(英文版)》2020,11(3):793-805
Detailed mineralogy,bulk rock major,trace and Sr-Nd isotope compositions,and ~(40)Ar/~(39)Ar dating of the Pipe-8 diamondiferous ultramafic intrusion in the Wajrakarur cluster of southern India,is reported.Based on the presence of Ti-rich phlogopite,high Na/K content in amphibole,Al-and Ti-rich diopside,a titanomagnetite trend in spinel and the presence of Ti-rich schorlomite garnet and carbonates in the groundmass,the Pipe-8 intrusion is here more precisely classified as an ultramafic lamprophyre(i.e.,aillikite).An aillikite affinity of the Pipe-8 intrusion is further supported by the bulk rock major and trace element and Sr-Nd isotope geochemistry.Sr-Nd isotope data are consistent with a common,moderately depleted upper mantle source region for both the Pipe-8 aillikite as well as the Wajrakarur kimberlites of southern India.A phlogopite-rich groundmass ~(40)Ar/~(39)Ar plateau age of 1115.8±7.9 Ma(2σ) for the Pipe-8 intrusion falls within a restricted 100 Ma time bracket as defined by the 1053-1155 Ma emplacement ages of kimberlites and related rocks in India.The presence of ultramafic lamprophyres,carbonatites,kimberlites,and olivine lamproites in the Wajrakarur kimberlite field requires low degrees of partial melting of contrasting metasomatic assemblages in a heterogeneous sub-continental lithospheric mantle.The widespread association of kimberlite and other mantle-derived magmatism during the Mesoproterozoic(ca.1.1 Ga) have been interpreted as being part of a single large igneous province comprising of the Kalahari,Australian,West Laurentian and Indian blocks of the Rodinia supercontinent that were in existence during its assembly.In India only kimberlite/lamproite/ultramafic lamprophyre magmatism occurred at this time without the associated large igneous provinces as seen in other parts of Rodinia.This may be because of the separated paleo-latitudinal position of India from Australia during the assembly of Rodinia.It is speculated that the presence of a large plume at or close to 1.1 Ga within the Rodinian supercontinent,with the Indian block located on its periphery,could be the reason for incipient melting of lithospheric mantle and the consequent emplacement of only kimberlites and other ultramafic,volatile rich rocks in India due to comparatively low thermal effects from the distant plume.  相似文献   

7.
New petrogeochemical data on a collection of 138 samples taken from 101 kimberlite bodies of the Alakit region of Yakutia have been interpreted. It was concluded that all studied kimberlites are homogenous in geochemical composition and comparable with Group I kimberlites of South Africa. Based on cluster analysis, kimberlites of the region are subdivided into six clusters. From the first to sixth clusters, kimberlites show a decrease in carbonate material and increase in magnesian component. The spatial distribution of clusters allowed us to distinguish zoned areas with central parts consisting of kimberlites with elevated CaO, CO2, Rb, Sr, Ba, and lowered contents of SiO2, TiO2, Fe2O3, FeO, MgO, V, Cr, and Ni. From the center outward, the values of δNd and (87Sr/86Sr)i decrease, which indicate increasing contribution of the lithospheric source. The formation of magnesian kimberlites at the periphery was related to the intense interaction of protokimberlite melt with lithospheric mantle, which was accompanied by metasomatic reworking of mantle rocks with formation of minerals of megacryst assemblage and assimilation of mantle material. Economically viable diamondiferous kimberlites are confined to the peripheral parts of distinguished zones, i.e., to the kimberlites of 5–6 clusters.  相似文献   

8.
 One diamond-bearing and eight graphite-bearing eclogite xenoliths are described from the Bellsbank kimberlites, Cape Province, South Africa. Graphite mostly occurs as discrete grains which are commonly in the form of tabular prisms. Diamond is octahedral. Both Group I and Group II eclogite varieties are represented by the graphite-bearing specimens, while the single diamond-bearing eclogite is of the Group I variety. The carbon isotopic composition of the graphite varies from δ13C=−7‰ to δ13C=−2.8‰. This is within the range of carbon isotopic compositions for inclusion-free diamonds in kimberlite from this locality, suggesting that the carbon for the eclogites as well as some of the kimberlite diamonds are derived from the same source. The present day Nd isotopic compositions of clinopyroxene from three graphite-bearing xenoliths are slightly higher than the bulk earth estimate. Sr isotopic compositions of the clinopyroxene in these xenoliths vary from 87Sr/86Sr=0.703 to 87Sr/86Sr=0.706. This could be due to derivation of the xenoliths from a protolith with variable 87Sr/86Sr isotopic composition or could be the result of mixing between a low-Sr, high 87Sr/86Sr component and a high Sr, low 87Sr/86Sr component. Received: 1 June 1994/Accepted: 6 March 1995  相似文献   

9.
《International Geology Review》2012,54(11):1350-1362
ABSTRACT

Recent studies show that crustal carbonates recycled into the mantle can be traced using Mg isotopes of basalts. However, the species of recycled carbonates are poorly constrained. Carbonates have lower δ26Mg values and higher 87Sr/86Sr ratios relative to the mantle, but different carbonate species display different mixing curves with the mantle in the Mg-Sr isotopic diagram because of differences in their Sr and Mg contents. Thus a combined study of Mg-Sr isotopes can constrain the species of deeply recycled carbonates. Here, we present newly determined 87Sr/86Sr ratios of the <110 Ma basalts from Eastern China, and together with published Mg isotopic data we evaluate the species of recycled carbonates in the mantle and discuss their implication. The <110 Ma basalts display low δ26Mg values of ?0.60 to ?0.30‰ and relatively low initial 87Sr/86Sr ratios of 0.70328 to 0.70537, suggesting that their mantle source was hybridized by recycled carbonates with a light Mg isotopic composition which had more significant effects on Mg than Sr isotope ratios. Mg-Sr isotopic data indicate that the recycled carbonates consist of magnesite and aragonite, but the possibility of calcite and dolomite cannot be eliminated. Based on the carbonated peridotite solidus, the equilibrium line between dolomite and magnesite + aragonite, as well as the mantle adiabat, the initial melting depth of the carbonated mantle, the source region of the studied basalts, was constrained at ~300–360 km. Thus, the subducted depth of the west Pacific slab underlying the carbonated mantle and supplying recycled carbonates should be greater than ~300–360 km, consistent with the seismic tomography result that the west Pacific slab now stagnates in the mantle transition zone.  相似文献   

10.
Trace element evidence indicates that at the Buell Park diatreme, Navajo volcanic field, the felsic minette can be best explained by crystal fractionation from a potassic magma similar in composition to the mafic minettes. Compatible trace element (Cr, Ni, Sc) abundances decrease while concentrations of most incompatible elements (Ce, Yb, Rb, Ba, Sr) remain constant or increase from mafic to felsic minette. In particular, the nearly constant Ce/Yb ratio of the minettes combined with the decrease in Cr, Ni, and Sc abundances from mafic to felsic minette is inconsistent with a model of varying amounts of partial melting as the process to explain minette compositions. The uniformity of rare earth element (REE) abundances in all the minettes requires that an accessory mineral, apatite, dominated the geochemistry of the REE during fractionation. A decrease in P2O5 from mafic to felsic minette and the presence of apatite in cognate inclusions are also consistent with apatite fractionation. Higher initial87Sr/86Sr ratios in the felsic minettes relative to the proposed parental mafic minettes, however, is inconsistent with a simple fractionation model. Also, a separated phlogopite has a higher initial87Sr/86Sr ratio than host minette. These anomalous isotopic features probably reflect interaction of minette magma with crust.The associated ultramafic breccia at Buell Park is one of the Navajo kimberlites, but REE concentrations of the matrix do not support the kimberlite classification. Although the matrix of the breccia is enriched in the light REE relative to chondrites, and has high La, Rb, Ba, and Sr concentrations relative to peridotites, the concentrations of these elements are significantly lower than in South African kimberlites. A high initial87Sr/86Sr ratio combined with petrographic evidence of ubiquitous crustal xenoliths in the Navajo kimberlites suggests that the relatively high incompatible element concentrations are due to a crustal component. Apparently, Navajo kimberlites are most likely a mixture of comminuted mantle wall rock and crustal material; there is no evidence for an incompatible element-rich magma which is characteristic of South African kimberlites.If the mafic minettes are primary magmas derived from a garnet peridotite source with chondritic REE abundances, then REE geochemistry requires very small (less than 1%) degrees of melting to explain the minettes. Alternatively, the minettes could have formed by a larger degree of melting of a metasomatized, relatively light REE-enriched garnet peridotite. The important role of phlogopite and apatite in the differentiation of the minettes supports this latter hypothesis.  相似文献   

11.
We present strontium (Sr) isotope ratios that, unlike traditional 87Sr/86Sr data, are not normalized to a fixed 88Sr/86Sr ratio of 8.375209 (defined as δ88/86Sr = 0 relative to NIST SRM 987). Instead, we correct for isotope fractionation during mass spectrometry with a 87Sr-84Sr double spike. This technique yields two independent ratios for 87Sr/86Sr and 88Sr/86Sr that are reported as (87Sr/86Sr∗) and (δ88/86Sr), respectively. The difference between the traditional radiogenic (87Sr/86Sr normalized to 88Sr/86Sr = 8.375209) and the new 87Sr/86Sr∗ values reflect natural mass-dependent isotope fractionation. In order to constrain glacial/interglacial changes in the marine Sr budget we compare the isotope composition of modern seawater ((87Sr/86Sr∗, δ88/86Sr)Seawater) and modern marine biogenic carbonates ((87Sr/86Sr∗, δ88/86Sr)Carbonates) with the corresponding values of river waters ((87Sr/86Sr∗, δ88/86Sr)River) and hydrothermal solutions ((87Sr/86Sr∗, δ88/86Sr)HydEnd) in a triple isotope plot. The measured (87Sr/86Sr∗, δ88/86Sr)River values of selected rivers that together account for ∼18% of the global Sr discharge yield a Sr flux-weighted mean of (0.7114(8), 0.315(8)‰). The average (87Sr/86Sr∗, δ88/86Sr)HydEnd values for hydrothermal solutions from the Atlantic Ocean are (0.7045(5), 0.27(3)‰). In contrast, the (87Sr/86Sr∗, δ88/86Sr)Carbonates values representing the marine Sr output are (0.70926(2), 0.21(2)‰). We estimate the modern Sr isotope composition of the sources at (0.7106(8), 0.310(8)‰). The difference between the estimated (87Sr/86Sr∗, δ88/86Sr)input and (87Sr/86Sr∗, δ88/86Sr)output values reflects isotope disequilibrium with respect to Sr inputs and outputs. In contrast to the modern ocean, isotope equilibrium between inputs and outputs during the last glacial maximum (10-30 ka before present) can be explained by invoking three times higher Sr inputs from a uniquely “glacial” source: weathering of shelf carbonates exposed at low sea levels. Our data are also consistent with the “weathering peak” hypothesis that invokes enhanced Sr inputs resulting from weathering of post-glacial exposure of abundant fine-grained material.  相似文献   

12.
The role of silicate and carbonate weathering in contributing to the major cation and Sr isotope geochemistry of the headwaters of the Ganga-Ghaghara-Indus system is investigated from the available data. The contributions from silicate weathering are determined from the composition of granites/ gneisses, soil profiles developed from them and from the chemistry of rivers flowing predominantly through silicate terrains. The chemistry of Precambrian carbonate outcrops of the Lesser Himalaya provided the data base to assess the supply from carbonate weathering. Mass balance calculations indicate that on an average ∼ 77% (Na + K) and ∼ 17% (Ca + Mg) in these rivers is of silicate origin. The silicate Sr component in these waters average ∼40% and in most cases it exceeds the carbonate Sr. The observations that (i) the87Sr/86Sr and Sr/Ca in the granites/gneisses bracket the values measured in the head waters; (ii) there is a strong positive correlation between87Sr/86Sr of the rivers and the silicate derived cations in them, suggest that silicate weathering is a major source for the highly radiogenic Sr isotope composition of these source waters. The generally low87Sr/86Sr (< 0.720) and Sr/Ca (∼ 0.2 nM/ μM) in the Precambrian carbonate outcrops rules them out as a major source of Sr and87Sr/86Sr in the headwaters on a basin-wide scale, however, the high87Sr/86Sr (∼ 0.85) in a few of these carbonates suggests that they can be important for particular streams. The analysis of87Sr/86Sr and Ca/Sr data of the source waters show that they diverge from a low87Sr/86Sr and low Ca/Sr end member. The high Ca/Sr of the Precambrian carbonates precludes them from being this end member, other possible candidates being Tethyan carbonates and Sr rich evaporite phases such as gypsum and celestite. The results of this study should find application in estimating the present-day silicate and carbonate weathering rates in the Himalaya and associated CO2 consumption rates and their global significance.  相似文献   

13.
Marbles from Changpu (Dabie Shan, eastern China), subducted to 4.4 GPa, have 87Sr/86Sr values < 0.7040. These low 87Sr/86Sr values, which would imply a sedimentation age > 2 Ga if considered as primary signature, reflect fluid–rock interaction with a fluid from a low‐87Sr/86Sr source. The introduction of low‐87Sr/86Sr was paralleled by introduction of Mg and loss of Si, K and Na in such a way that carbonates from the purest marbles have the least evolved Sr isotopic composition. Introduction of Mg is also indicated by the distribution of calcite and dolomite. Calcite forms inclusions in garnet, whereas dolomite is restricted to the matrix. These chemical changes, inferred from the mineralogy, in combination with textural evidence require a mobile metamorphic fluid. PTX constraints for fluid generation and for permeability increase related to mineral reactions and phase transitions suggest that the marbles acquired their anomalous Sr‐isotopic composition during subduction below 60 km. The marbles with the least radiogenic Sr isotopic composition demonstrate that crustal rocks may lose their isotopic fingerprint during deep subduction.  相似文献   

14.
E.M.W. Skinner  J.S. Marsh 《Lithos》2004,76(1-4):183-200
Field and Scott Smith [Field, M., Scott Smith, B.H., 1999. Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada. Proc. 7th Int. Kimb. Conf. (Eds. Gurney et al.) 1, 214–237.] propose that kimberlite pipes can be grouped into three types or classes. Classical or Class 1 pipes are the only class with characteristic low temperature, diatreme-facies kimberlite in addition to hypabyssal- and crater-facies kimberlite. Class 2 and 3 pipes are characterized only by hypabyssal-and crater-facies kimberlite. In an increasing number of Class 1 pipes a new kimberlite facies, transitional-facies kimberlite, is being found. In most cases this facies forms a zone several metres wide at the interface between the hypabyssal- and diatreme-facies. The transitional-facies exhibits textural and mineralogical features, which are continuously gradational between the hypabyssal and the diatreme types. The textural gradations are from a coherent magmatic texture to one where the rock becomes increasingly magmaclastic and this is accompanied by concomitant mineralogical gradations involving the decline and eventual elimination of primary calcite at the expense of microlitic diopside. Both transitional- and diatreme-facies kimberlites are considered to have formed in situ from intruding hypabyssal kimberlite magma as a consequence of exsolution of initially CO2-rich volatiles from the volatile-rich kimberlite magma. The transitional-facies is initiated by volatile exsolution at depths of about 3 km below the original surface. With subsequent cracking through to the surface and resultant rapid decompression, the further catastrophic exsolution of volatiles and their expansion leads to the formation of the diatreme facies. Thus diatreme-facies kimberlite and Class 1 pipes are emplaced by essentially magmatic processes rather than by phreatomagmatism.

Distinctly different petrographic features characterize crater-facies kimberlite in each of the three pipe classes. In crater-facies kimberlites of Class 1 pipes, small pelletal magmaclasts and abundant microlitic diopside are characteristic. These features appear to reflect the derivation of the crater-facies material from the underlying diatreme zone. Most Class 2 pipes have shallow craters and the crater-facies rocks are predominantly pyroclastic kimberlites with diagnostic amoeboid lapilli, which are sometimes welded and have vesicles as well as glass. Possible kimberlite lava also occurs at two Class 2 pipes in N Angola. The possible presence of lava as well as the features of the pyroclastic kimberlite is indicative of hot kimberlite magma being able to rise to levels close to the surface to form Class 2 pipes. Most Class 3 kimberlites have very steep craters and crater-facies rocks are predominantly resedimented volcaniclastic kimberlites, in some cases characterized by the presence of abundant angular magmaclasts, which are petrographically very similar to typical hypabyssal-facies kimberlite found in Class 1 pipes. The differences in crater-facies kimberlite of the three classes of pipe reflect different formation and depositional processes as well as differences in kimberlite composition, specifically volatile composition. Kimberlite forming pipe Classes 1 and 3 is thought to be relatively water-rich and is emplaced by processes involving magmatic exsolution of volatiles. The kimberlite magma forming Class 2 pipes is CO2-rich, can rise to shallow levels, and can initiate phreatomagmatic emplacement processes.  相似文献   


15.
Rb-Sr isotopic dating of phlogopite megacryst samples separated from Sturgeon Lake kimberlite, Saskatchewan, yields a crystallization age of 98±1 Ma (2 , MSWD=1.2; 87Sr/86Sr(t)=0.7059). The 40Ar/39Ar analyses of a phlogopite megacryst sample indicate the presence of large amounts of excess 40Ar and yield an excessively old age of 410 Ma. Assessment of the Ar data using isotope correlation plots indicates clustering of the data points about a mixing line between the radiogenic 40Ar component at 98 Ma and a trapped component with uniform 36Ar/40Ar and Cl/40Ar. Values of {ie212-1} as high as +20%. (VSMOW) for calcite from the groundmass and a whole-rock sample indicate pervasive lowtemperature alteration. The {ie212-2} of matrix carbonate is-11.3%. (PDB), slightly lighter than typical values from the literature. The {ie212-3} values of about +5%. (VSMOW) for brown phlogopite megacrysts may be primary, green phlogopites are interpreted to be an alteration product of the brown variety and are 2%. heavier. Initial Nd-Sr-Pb isotopic ratios for a whole-rock sample {ie212-4}; 87Sr/86Sr=0.7063, 206Pb/204Pb=18.67, 207Pb/204Pb=15.54, 208Pb/204Pb=38.97) suggest an affinity with group I kimberlites. Initial {ie212-5} values of +1.7 and +0.5 (87Sr/ 86Sr(t)=0.7053 and 0.7050) for eclogitic and lherzolitic garnet megacryst samples, and values of 0.0 for two phlogopite megacryst samples reflect an origin from an isotopically evolving melt due to assimilation of heterogeneous mantle. Lilac high-Cr lherzolitic garnet megacrysts give an unusually high {ie212-6} of +28.6 (87Sr/86Sr=0.7046) indicating a xenocrystic origin probably from the lithospheric mantle. The very radiogenic 87Sr/86Sr and 206Pb/204Pb ratios of the kimberlite are consistent with melting of EM II (enriched) mantle components.  相似文献   

16.
Sr isotopic zoning within single plagioclase crystals from rocks from Unit 9 of the Rum layered intrusion is used to infer events during crystal growth in a magma undergoing contamination. The 87Sr/86Sr diversity among minerals and between cores and rims of plagioclase crystals increases as the boundary between unit 9 and the overlying Unit 10 peridotite is approached. Models of near-solidus interaction of the cumulate with a fluid or melt, or large scale textural re-equilibration, cannot easily account for the systematic differences in 87Sr/86Sr between small crystals and the rims of larger crystals.We propose a simple interpretation in which crystal growth is concentrated along the cool margins of the reservoir. Crystals are subsequently advected to a site of accumulation at the base of the reservoir, probably by episodic plume-like dense downwellings allowing mixing of isotopically zoned and unzoned crystals.If the core-rim isotope variations are inherited from primary magmatic growth, then the small distances over which they are now preserved (1–2 mm) place constraints on the minimum cooling rate of the intrusion. Although the length scale of diffusive equilibration is influenced by a number of poorly-constrained variables (starting temperature, feldspar composition, temperature-time path) cooling was clearly very rapid with cooling to effective closure (~1,000 °C) within a few thousand years.Editorial responsibility: I. Parsons  相似文献   

17.
Isotope, trace element, and textural crystal zoning patterns record heterogeneity in magmatic systems not resolved by whole rock analyses. These zoning data are used to infer crystal residence times, magma mixing, and other magmatic processes in many magmatic systems. We present the shared characteristic diagram (SCD) as an organizational framework for crystal zoning data that compares information from different phases and chemical tracers in a common framework. An example from Chaos Crags in the Cascade arc, produces three main results. (1) Anorthite zoning profiles in plagioclase have fewer shared characteristics in mafic inclusions than in the host rhyodacite. (2) Single-crystal 87Sr/86Sr data from previous studies (Tepley et al. 1999) are consistent with more shared history between crystals than in anorthite profiles. This difference reflects a more homogeneous distribution of 87Sr/86Sr than the intensive parameters controlling plagioclase composition. (3) The Chaos Crags system exhibits a layer of heterogeneity in crystal populations that is not represented in whole-rock analyses that indicate only simple binary mixing. The inconsistency between 87Sr/86Sr and anorthite zoning data highlights decoupling between compositionally controlled and temperature/water-controlled zoning in plagioclase from Chaos Crags.  相似文献   

18.
The differentiated Mesozoic alkali dolerite Prospect Intrusion contains a wide range of secondary minerals, including carbonates (primarily calcite), laumontite, prehnite and heulandite, whose stability relationships imply a formation temperature of <200°C. The δ18O data for carbonates define a higher temperature (160 – 195°C) suite, and a lower temperature (51 – 73°C) suite. The δ13C, δ18O and 87Sr/86Sr isotope systematics for these carbonates suggest derivation of the higher temperature group from magmatic fluids, whereas the other group had a major meteoric component that probably originated from porewater in the country rock. Source fluids for prehnite were meteoric rather than magmatic in origin based on their δD and δ18O ratios. Early in the intrusion's emplacement, CO2-rich hydrothermal fluids formed a carbonate rind sealing the upper part of the hydrothermal system and produced the higher temperature carbonates (calcite) and laumontite. Later, cooler fluids with a meteoric component infiltrated vesicles and fractures, depositing the lower temperature carbonates (calcite, aragonite), heulandite and prehnite.  相似文献   

19.
A 4-yr study of spatial and temporal variability in the geochemistry of vadose groundwaters from caves within the Edwards aquifer region of central Texas offers new insights into controls on vadose groundwater evolution, the relationship between vadose and phreatic groundwaters, and the fundamental influence of soil composition on groundwater geochemistry. Variations in Sr isotopes and trace elements (Mg/Ca and Sr/Ca ratios) of dripwaters and soils from different caves, as well as phreatic groundwaters, provide the potential to distinguish between local variability and regional processes controlling fluid geochemistry, and a framework for understanding the links between climatic and hydrologic processes.The Sr isotope compositions of vadose cave dripwaters (mean 87Sr/86Sr = 0.7087) and phreatic groundwaters (mean 87Sr/86Sr = 0.7079) generally fall between values for host carbonates (mean 87Sr/86Sr = 0.7076) and exchangeable Sr in overlying soils (mean 87Sr/86Sr = 0.7088). Dripwaters have lower Mg/Ca and Sr/Ca ratios, and higher 87Sr/86Sr values than phreatic groundwaters. Dripwater 87Sr/86Sr values also inversely correlate with both Mg/Ca and Sr/Ca ratios. Mass-balance modeling combined with these geochemical relationships suggest that variations in fluid compositions are predominantly controlled by groundwater residence times, and water-rock interaction with overlying soils and host aquifer carbonate rocks. Consistent differences in dripwater geochemistry (i.e., 87Sr/86Sr, Mg/Ca, and Sr/Ca) between individual caves are similar to compositional differences in soils above the caves. While these differences appear to exert significant control on local fluid evolution, geochemical and isotopic variations suggest that the controlling processes are regionally extensive. Temporal variations in 87Sr/86Sr values and Mg/Ca ratios of dripwaters from some sites over the 4-yr interval correspond with changes in both aquifer and climatic parameters. These results have important implications for the interpretation of trace element and isotopic variations in speleothems as paleoclimate records, as well as the understanding of controls on water chemistry for both present-day and ancient carbonate aquifers.  相似文献   

20.

Here we present new data from a systematic Sr, Nd, O, C isotope and geochemical study of kimberlites of Devonian age Mirny field that are located in the southernmost part of the Siberian diamondiferous province. Major and trace element compositions of the Mirny field kimberlites show a significant compositional variability both between pipes and within one diatreme. They are enriched in incompatible trace elements with La/Yb ratios in the range of (65–300). Initial Nd isotope ratios calculated back to the time of the Mirny field kimberlite emplacement (t = 360 ma) are depleted relative to the chondritic uniform reservoir (CHUR) model being 4 up to 6 ɛNd(t) units, suggesting an asthenospheric source for incompatible elements in kimberlites. Initial Sr isotope ratios are significantly variable, being in the range 0.70387–0.70845, indicating a complex source history and a strong influence of post-magmatic alteration. Four samples have almost identical initial Nd and Sr isotope compositions that are similar to the prevalent mantle (PREMA) reservoir. We propose that the source of the proto-kimberlite melt of the Mirny field kimberlites is the same as that for the majority of ocean island basalts (OIB). The source of the Mirny field kimberlites must possess three main features: It should be enriched with incompatible elements, be depleted in the major elements (Si, Al, Fe and Ti) and heavy rare earth elements (REE) and it should retain the asthenospheric Nd isotope composition. A two-stage model of kimberlite melt formation can fulfil those requirements. The intrusion of small bodies of this proto-kimberlite melt into lithospheric mantle forms a veined heterogeneously enriched source through fractional crystallization and metasomatism of adjacent peridotites. Re-melting of this source shortly after it was metasomatically enriched produced the kimberlite melt. The chemistry, mineralogy and diamond grade of each particular kimberlite are strongly dependent on the character of the heterogeneous source part from which they melted and ascended.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号