首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An extensive experimental investigation on four SWATH hull forms has been conducted in calm water and in regular waves at University of Naples Federico II. Calm water tests have been analyzed in the range of Froude number FrT from 0.1 to 0.6. For all four SWATH configurations at the speed, corresponding to FrT 0.32, the behaviour in regular waves has been tested. The results of heave, pitch and vertical accelerations are presented in nondimensional form as RAO. For the “most promising” SWATH #4 configuration, a set of stabilizing fins have been designed and an active stabilization system has been developed. The developed SWATH#5 has been tested in calm water on three displacements in the range of FrT from 0.1 to 0.65. The dynamic wetted surface has been identified and the residual resistance coefficient CR as well as RT/Δ are reported. Seakeeping tests have been performed in regular head sea and in head and following irregular sea at FrT = 0.50. The conditions for the occurrence of dynamic longitudinal instabilities have been identified. The results allows to comment the effect of slenderness of struts and SWATH’s immersed bodies on resistance and seakeeping and concerns the applicability of SWATH concept to small craft.  相似文献   

2.
A numerical study was undertaken in order to assess the capability of an unsteady RANS code to predict the seakeeping characteristics of a high-speed multi-hull vessel in high sea states. Numerical analysis includes evaluation of ship motions, effects of wave steepness on ship response, catamaran natural frequency and added resistance in waves. Computations were performed for the DELFT 372 catamaran by the URANS solver CFDSHIP-Iowa V.4. The code was validated with encouraging results for high ship speeds (0.3≤Fn≤0.75) and high wave amplitudes (0.025≤Ak≤0.1). Comparison with strip theory solutions shows that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. Current computations evidence that heave peaks occur at resonance for all Fn, and reach the absolute maximum at Fn=0.75. Maximum pitch occurs at frequencies lower than resonance, for each speed, and absolute maximum occurs at medium Fn=0.6. Maximum added resistance, Raw, was computed at Fn=0.45, which, interestingly, is near the catamaran Fncoincidence. Overall, we found similar results as Simonsen et al. (2008) for KCS containership, though, herein, a multi-hull geometry and higher speeds were tested. Also, our results are useful to further evaluate the exciting forces and their correlation with fe and λ/Lpp.  相似文献   

3.
The overall performance of ships depends on the seakeeping performance in specified sea areas where the vessel is designed to operate. The seakeeping performance procedure is based upon the probability of exceeding specified ship motions in a sea environment particular to the vessel's mission. Given the operational area of the vessel, the percentage of time the vessel operates in a particular sea state can be determined from an oceanographic database through application of the response amplitude operators. The predicted motions are compared to the motion limiting criteria to obtain the operability indices. However, the operability indices are strongly affected by the chosen limiting criteria. This is particularly the case for passenger vessels where many conflicting criteria are used to assess the effect of motions and accelerations on comfort and well-being of passengers. This paper investigates the effect of seakeeping criteria on seakeeping performance assessment for passenger vessels. Conventional seakeeping performance measures are evaluated for various levels of vertical accelerations defined by the ISO 2631 standard. It is shown that the estimated seakeeping performance of a passenger vessel greatly depends on the level of limiting value selected as the seakeeping criteria.  相似文献   

4.
Vessels operating in shallow waters require careful observation of the finite-depth effect. In present study, a Rankine source method that includes the shallow water effect and double body steady flow effect is developed in frequency domain. In order to verify present numerical methods, two experiments were carried out respectively to measure the wave loads and free motions for ship advancing with forward speed in head regular waves. Numerical results are systematically compared with experiments and other solutions using the double body basis flow approach, the Neumann-Kelvin approach with simplified m-terms, and linearized free surface boundary conditions with double-body m-terms. Furthermore, the influence of water depths on added mass and damping coefficients, wave excitation forces, motions and unsteady wave patterns are deeply investigated. It is found that finite-depth effect is important and unsteady wave pattern in shallow water is dependent on both of the Brard number τ and depth Froude number Fh.  相似文献   

5.
This paper analyzes the hydrodynamic performance of a planing craft with a fixed hydrofoil in regular waves. Numerical simulations are carried out based on a RANS-VOF solver to study the hydrodynamic performance of the planing craft and the influence of the fixed hydrofoil on its seakeeping. To validate the numerical method, a series of hydrodynamic experiments of a bare planing craft without the hydrofoil were carried out, from which the seakeeping performance of the planing craft was recorded, the numerical method based on overset grid was compared with the experiment and verified reliable. Eight hydrofoil design cases were then studied, whereby, their seakeeping performance in regular wave conditions were predicted through the numerical method which has been verified reliable and compared with each other. Effects of hydrofoil parameters, such as angle of attack and installation height, on the seakeeping performance were investigated. Finally, the suitable installation parameters which can optimize the performance of hydrofoil and reduce the negative influence are verified. The influence of the speed on the effect of the hydrofoil and the flow field around the planing craft are also investigated.  相似文献   

6.
This study investigates the occurrence of irregular frequencies in a seakeeping analysis of a ship moving with forward speed. This is achieved by formulating the interior virtual flow Dirichlet or Neumann eigenvalue problem. A theoretical analysis of a rectangular box travelling and oscillating in waves reveals that in the forward speed case, apart from the singular irregular frequency at zero encounter frequency, no irregular frequencies exist whilst at zero forward speed multiple irregular frequencies are observed confirming previous findings. These theoretical predictions are further verified by numerical calculations involving the rectangular box and a Series 60, CB=0.70, hull.  相似文献   

7.
Added resistance in waves is an important part of ship dynamic due to its economical effect on ship exploitation. Can the ship sustain speed in a rough sea state? If not, this will produce delays and economical losses if added resistance is not taken into account in the propulsion design. There are not many simple methods to obtain the added resistance in waves of a ship, and the validity of the results is not always good enough for different ships. In this paper, some theories that can be used to predict the added resistance of a ship are studied and validated against seakeeping tests of some monohull models. Tests and results focus in head seas, which are the most severe for the added resistance. Experimental results are compared with numerical calculations and conclusions about the range of application of the presented theories are obtained.  相似文献   

8.
Non-linear loads on a fixed body due to waves and a current are investigated. Potential theory is used to describe the flow, and a three-dimensional (3D) boundary element method (BEM), combined with a time-stepping procedure, is used to solve the problem. The exact free-surface boundary conditions are expanded about the still-water level by Taylor series so that the solution is evaluated on a time-invariant geometry. A formulation correct to second order in the wave steepness and to first order in the current speed is used. Numerical results are obtained for the first-order and the second-order oscillatory forces and for the second-order mean force on a fixed vertical circular cylinder in waves and a current. The second-order oscillatory forces on the body in waves and current are new results, while the remaining force components are verified by comparison with established numerical and analytical models. It is shown that the current can have a significant influence on the forces, and especially on the amplitude of the second-order oscillatory component.  相似文献   

9.
Two computations of the KCS model with motions are presented. Self-propulsion in model scale free to sink and trim are studied with the rotating discretized propeller from the Hamburg Model Basin (HSVA) at Fr = 0.26. This case is particularly complex to simulate due to the close proximity of the propeller to the rudder. The second case involves pitch and heave in regular head waves. Computations were performed with CFDShip-Iowa version 4.5, a RANS/DES CFD code designed for ship hydrodynamics. The self-propulsion computations were carried out following the procedure described in Carrica et al. [1], in which a speed controller is used to find the propeller rotational speed that results in the specified ship velocity. The rate of revolutions n, sinkage, trim, thrust and torque coefficients KT, KQ and resistance coefficient CT(SP) are thus obtained. Comparisons between CFD and EFD show that the rate of revolutions n, thrust and torque coefficients KT and KQ have higher prediction accuracies than sinkage and trim. For the simulation of pitch and heave in head waves, the geometry includes KCS hull and rudder under three conditions with two Froude numbers and three wave length and amplitude combinations. 0th and 1st harmonic amplitudes and 1st harmonic phase are computed for total resistance coefficient CT, heave motion z and pitch angle θ. Comparisons between CFD and EFD show that pitch and heave are much better predicted than the resistance. In both cases comparisons with simulations by other authors presented at the G2010 CFD Workshop [2] using different CFD methodologies are included.  相似文献   

10.
Linear theories to analyse a floating and liquid-filled membrane structure in head- and beam-sea waves have been presented. The dynamic solutions are based on a small perturbation of the static solution, and the hydroelastic deformation has been taken care of correctly to the first order of the incident wave amplitude. A new experiment has been carried out for measuring the dynamic tensions of a membrane. A comparison between the theories and experiment are presented for the dynamic hoop tension.  相似文献   

11.
Most of the large scaled casualties are caused by loss of structural strength and stability due to the progressive flooding and the effect of waves and wind. To prevent foundering and structural failure, it is necessary to predict the motion of the damaged ship in waves.This paper describes the motion of damaged ship in waves resulting from a theoretical and experimental study. A time domain theoretical model, which can be applied to any type of ship or arrangement, for the prediction of damaged ship motion and accidental flooding has been developed considering the effects of flooding of compartments. To evaluate the accuracy of the model, model tests are carried out in ship motion basin for three different damaged conditions: engine room bottom damage, side shell damage and bow visor damage of Ro–Ro ship in regular and irregular waves with different wave heights and directions.  相似文献   

12.
Prediction of ship motions at high Froude number is carried out using a time domain strip theory in which the unsteady hydrodynamic problem is treated in terms of the motion of fixed strips of the water as hull sections pass through it. The Green function solution is described and the integration of the ship motion carried out by an averaging method to ensure stability of the solution. The method is validated by comparison with tank data for conventional slender hulls suitable for catamarans, small water area twin hull (SWATH) forms and hulls suitable for high-speed monohulls. Motion computations are then carried out for 14 designs with an operating speed of 40 kts and a displacement of 1000 tonnes. The vessels are assumed not to be fitted with motion control systems for the purposes of this comparative study. Motion sickness incidence is predicted to rise to between 42 and 72% depending upon the hull design in 3 m head seas of average period 7.5 s. MSI values reduce in smaller seas with a shorter average period to be less than 15% in all cases in 1m seas with an average period of 5.5 s.  相似文献   

13.
The eruption of an underwater volcano can initiate the disturbances of the sea surface and subsequently generate a group of outward-propagating tsunamis. The theme of this study is to introduce a three-dimensional (3D) fully nonlinear wave model for the simulation of wave motions induced by a bottom jet. A boundary-fitted coordinate system is utilized to conveniently adjust grids according to the transient moving free surface. The governing Laplace equation of the velocity potential is solved by an implicit finite-difference scheme while a mixed explicit/implicit iteration procedure is applied to solve the free-surface boundary conditions. In addition, a set of generalized Boussinesq equations are solved for comparison with the fully nonlinear model. Good agreements in comparisons with the existing numerical and analytical solutions are achieved for cases investigated. Waves induced by three types of bottom jets: namely (1) sudden eruption, (2) initial transient, and (3) periodic transient are discussed in this paper. For the case of sudden erupted jet, a system of 3D outgoing waves as the cylindrical wave pattern are presented and discussed. For the initial transient types, it shows the transition in the incipient stage has a great influence on the initial rising of the water surface and the induced leading waves. Furthermore, an interesting up-down phenomenon in the center of disturbed free surface due to the type of periodic jet is revealed.  相似文献   

14.
This paper addresses the problem of ergodicity of stochastic processes starting from a theoretical point of view, with the aim of obtaining a deeper understanding for practical applications. The problem is tackled bearing in mind the concept of ‘practical ergodicity’, that is, the possibility of obtaining reliable information about ensemble averages by using temporal averages. Some general analytical tools are given to address the problem of accuracy of temporal averages and an example of their use in a possible design of experiments is given. A series of Monte Carlo numerical simulations are performed by means of an analytical non-linear 1.5-DOF model of parametrically excited roll motion. The outcomes of such simulations are analysed to show the effect of ship speed and sea spectrum shape. The effect of wave grouping phenomenon is discussed with particular attention to the Doppler effect. Qualitative indications given by the numerical simulations are then compared with experimental tests showing a good agreement. Practical ergodicity of generated sea in towing tank is also briefly addressed.  相似文献   

15.
《Ocean Engineering》2006,33(3-4):350-364
The aim of this paper is to investigate the propagation of ship waves on a sloping coast on the basis of results simulated by a 2D model. The governing equations used for the present model are the improved Boussinesq-type equations. The wave breaking process is parameterized by adding a dissipation term to the depth-integrated momentum equation. To give the boundary conditions at the ship location, the slender-ship approximation is used. It was verified that, although ship waves are essentially transient, the Snell's law can be applied to predict crest orientation of the wake system on a sloping coast. Based on simulated results, an applicable empirical formula to predict the maximum wave height on the slope is introduced. The maximum wave height estimated by the proposed method agrees well with numerical simulation results.  相似文献   

16.
利用基于三维势流理论的Wasim软件,系统研究了在不同海况下大型豪华邮轮的耐波性能及作用在救生艇上的砰击载荷。首先计算豪华邮轮在规则波和不规则波中的运动响应,分析航速、浪向和海况对豪华邮轮运动响应的影响规律,然后计算救生艇在不同海况下砰击载荷的变化规律,根据变化规律评估救生艇在实际航行中的安全性。结果表明:豪华邮轮运动响应幅值随着航速和海况的增大整体呈增大趋势,规则波中横摇运动响应幅值在浪向90°时最大;当豪华邮轮处于4级和6级海况时救生艇不发生砰击;当豪华邮轮处于8级海况且航速大于10.29 m/s时救生艇发生砰击,为保证救生艇的安全,邮轮应避免在浪向120°和浪向150°下航行,此时建议邮轮以低于12.35 m/s的航速迎浪180°航行。  相似文献   

17.
The singularities, oscillatory performances and the contributing factors to the 3-D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.  相似文献   

18.
The energy extraction performance of a flapping foil generator is studied through experiment and numerical simulation. A practical flapping foil generator has been proposed. The heave motion and the pitch motion of the foil are adjusted through a crankshaft-like structure. The heave and pitch motions of the foil are transferred to the rotational motion of the main shaft. A pair of gears is adopted to increase the pitch angle. A prototype with pitch amplitude θ0 = 60 has been built and the experiment is carried out in a tunnel. The overall performance of the mechanism has been analysed. Good agreement of numerical results and experiment data has been found. Further simulations with larger pitch amplitudes are carried out. It is found that higher efficiency can be achieved with larger pitch amplitude at medium frequency.  相似文献   

19.
This paper aims to validate a numerical seakeeping code based on a 3D Rankine panel method by comparing its results with experimental data. Particularly, the motion response and hull-girder loads on a real modern ship, a 6500 TEU containership, are considered in this validation study. The method of solution is a 3D Rankine panel method which adopts B-spline basis function in the time domain. The numerical code is based on the weakly nonlinear scheme which considers nonlinear Froude-Krylov and restoring forces. The main focus of this study is given to investigate the nonlinear characteristics of wave-induced loads, and to validate this present scheme for industrial use in the range of low Froude number. The comparisons show that the nonlinear motions and hull-girder loads, computed by the present numerical code, have good overall agreements with experimental results. It is found that, for the better accuracy of computational results, particularly at extreme waves in oblique seas, the careful treatment of soft-spring (or compatible) system is recommended to the control of non-restoring motions such as surge, sway, and yaw.  相似文献   

20.
Jaehoon Yoo  Hyoung Tae Kim   《Ocean Engineering》2006,33(10):1322-1342
It is important to understand flow characteristics and performances of sails for both sailors and designers who want to have efficient thrust of yacht. In this paper the viscous flows around sail-like rigid wings, which are similar to main and jib sails of a 30 feet sloop, are calculated using a CFD tool. Lift, drag and thrust forces are estimated for various conditions of gap distance between the two sails and the center of effort of the sail system are obtained. Wind tunnel experiments are also carried out to measure aerodynamic forces acting on the sail system and to validate the computation. It is found that the combination of two sails produces the lift force larger than the sum of that produced separately by each sail and the gap distance between the two sails is an important factor to determine total lift and thrust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号