首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The excess pore pressure accumulation is a key factor when estimating the formation mechanism of large pockmarks, as it determines the liquefaction potential of marine sediments due to water waves. The governing equations for excess pore pressure may have different forms for various types of sediments and then shall reflect the cyclic plasticity of the soil. For water waves propagating over a porous seabed, the liquefaction area induced by waves is generally progressive, which indicates that the liquefaction area will move forward following the wave train. Therefore, the excess pore pressure accumulation can be used to explain the occurrence of the large pockmarks, but the dimension of the pockmark may be related to the heterogeneity of sediment or the wave properties affected by the topography in the subaqueous Yellow River Delta.  相似文献   

2.
Wave-induced liquefaction in a porous seabed around submarine pipeline may cause catastrophic consequences such as large horizontal displacements of pipelines on the seabed, sinking or floatation of buried pipelines. Most previous studies in relation to the wave and seabed interactions with embedded pipeline dealt with the wave-induced instaneous seabed response and possible resulting momentary liquefaction (where the soil is liquefied instantaneously during the passage of a wave trough), using theory of poro-elasticity. Studies for the interactions between a buried pipeline and a soil undergoing build-up of pore pressure and residual liquefaction have been comparatively rare. In this paper, this complicated process was investigated by using a new developed integrated numerical model with RANS (Reynolds averaged Navier–Stokes) equations used for governing the incompressible flow in the wave field and Biot consolidation equations used for linking the solid–pore fluid interactions in a porous seabed with embedded pipeline. Regarding the wave-induced residual soil response, a two-dimensional poro-elastoplastic solution with the new definition of the source term was developed, where the pre-consolidation analysis of seabed foundation under gravitational forces including the body forces of a pipeline was incorporated. The proposed numerical model was verified with laboratory experiment to demonstrate its accuracy and effectiveness. The numerical results indicate that residual liquefaction is more likely to occur in the vicinity of the pipeline compared to that in the far-field. The inclusion of body forces of a pipeline in the pre-consolidation analysis of seabed foundation significantly affects the potential for residual liquefaction in the vicinity of the pipeline, especially for a shallow-embedded case. Parametric studies reveal that the gradients of maximum liquefaction depth with various wave and soil characteristics become steeper as pipeline burial depth decreases.  相似文献   

3.
In this study, an analytical solution is developed for the problem of periodic waves propagating over a poro-elastic seabed of infinite depth. Water waves above the seabed are described using the linear wave theory. The poro-elastic seabed is modelled based on the Biot theory in which the inertia effect and Darcy's friction are added. Continuity of dynamic pressure and flow flux at the interfacial seabed surface are considered. Adopting an approach similar to Hsu et al. (1993), the governing equations for the pore pressure and displacements of the poro-elastic medium are derived. The present analytic solution compares favorably well with experimental results by Yamamoto et al. (1978), and analytical results by Song (1993) for the case of fine sand. Using the present theory, variations of the wavelength and fluid pressure caused by coupling of waves and the poro-elastic seabed are discussed. Results show that higher elasticity of the poro-elastic seabed induces larger interface pressure, but higher permeability causes smaller pressure on the seabed interface. The wave length is affected by the poro-elastic seabed and becomes shorter for softer seabed and shallower water depth.  相似文献   

4.
Seabed instability caused by soil liquefaction due to build-up of excess pore pressure within the sedimentary seabed represents a serious threat to coastal structures. Models of varying sophistication exist for predicting the liquefaction process but most previous calculations are limited to regular waves while the real waves are random. In this study, a numerical study of liquefaction potential of a sand bed under narrow-band random waves is carried out employing ensemble modelling techniques. The aim of the work is to investigate the effect of random waves on excess pore pressure build-up and liquefaction processes and study the probability distribution of the maximum liquefaction depth. The computational results using a 1D liquefaction model indicate that the random wave-induced liquefaction can be much deeper than that of the corresponding regular waves with the largest individual waves in the random wave time series playing a dominant role in determining the maximum liquefaction depth. It is also found that the time for the maximum liquefaction depth to be reached can vary considerably from one random wave series to another, which suggests that in random waves notable densification may occur within the same timeframe as that for liquefaction.  相似文献   

5.
The Mechanism Analysis of Seafloor Silt Liquefaction Under Wave Loading   总被引:5,自引:0,他引:5  
The sediment in Chengbei area of the Huanghe (Yellow River) subaqueous delta is the object of a reseach project in this article. The accumulating and dissipating effects following the change of time are considered first in the study area and the distributing curves of excess pore water pressure along with time and depth in the soil stratum are gained; the possibility of silt liquefaction is evaluated using the computing values and the affecting depth of liquefaction is given. This paper quantitatively analyzes the dynamic response of seafloor soil under the cyclic loading of waves and makes an inquiry into the instable mechanism of soil.  相似文献   

6.
华莹  周香莲  张军 《海洋通报》2017,36(6):644-651
基于广义Biot动力理论和Longuet-Higgins线性叠加模型,构建波浪-海床-管线动态响应的有限元计算模型,求解随机波作用下,多层砂质海床中管线周围土体孔隙水压力和竖向有效应力的分布。采用基于超静孔隙水压力的液化判断准则,得出液化区的最大深度及横向范围,从而判断海床土体液化情况。考虑海洋波浪的随机性,将海床视为多孔介质,海床动态响应计算模型采用u-p模式,孔隙水压力和位移视为场变量。并考虑孔隙水的可压缩性、海床弹性变形、土体速度、土体加速度以及流体速度的影响,忽略孔隙流体惯性作用。参数研究表明:土体渗透系数、饱和度以及有效波高等参数对海床土体孔隙水压力、竖向有效应力和液化区域分布有显著影响。  相似文献   

7.
考虑土骨架加速度效应的海床动力反应及其影响因素分析   总被引:2,自引:0,他引:2  
栾茂田  王栋 《海洋学报》2002,24(6):112-119
由Biot二维广义动力固结理论的形式基本控制方程出发,忽略孔隙流体的加速度,提出了饱和海床动力反应的时域有限元数值解法.联立静力平衡条件和Biot固结方程的退化法所得到的数值解可视为其特例.在比较算例中,退化法得到的超静孔压和有效应力幅值沿海床深度的分布与解析解一致.一般情况下,土骨架的加速度对海床的有效应力和超静孔压影响很小,控制方程可以退化为Biot理论.成层海床上部的粗砂层不会使超静孔压幅值在海床表面下较浅的深度内迅速衰减,难以改变海床的瞬时循环液化深度.  相似文献   

8.
海底石油管线泄漏可能导致海床内部形成高浓度石油污染。在波浪作用下,海床沉积物易发生再悬浮甚至液化失稳现象,进而导致海床内部石油类污染物通过多种途径向水体再次释放并在土体内部发生迁移,造成更大范围的石油扩散。本研究以总石油烃(Total Petroleum Hydrocarbon,TPH)设为代表性污染物,将污染泥浆以椭球状埋设在沉积物内部,采用波浪水槽试验研究不同强度波浪作用下TPH向上覆水体的释放规律及在沉积物内部的迁移规律。结果表明,在沉积物静置固结阶段前期,TPH随孔隙水由沉积物向上覆水体迁移释放,固结阶段前期TPH向上覆水体的释放量高于后期。在波浪作用未引起沉积物液化阶段,波浪促进石油类污染物向水体释放的作用较弱,由于悬浮泥沙对石油类污染物的吸附作用,水体中石油类污染物的浓度略低于静置固结阶段。在波浪作用引起沉积物液化阶段,随着悬浮泥沙浓度升高,TPH向上覆水体释放量加大;TPH在沉积物内部垂向迁移及平面扩散迁移距离加大,平面迁移距离大于垂向迁移距离,垂向扩散深度与液化深度基本一致,污染土体体积占比约为土体未液化时的3倍。  相似文献   

9.
波浪会对海床产生反复的作用力,由此引起的土体颗粒间孔隙水压力变化是造成土体液化的主要原因。使用自行研发的孔压监测设备,对黄河口埕岛海域易液化区海底孔压进行了长时间、高精度的观测,并对孔隙水压力、波高以及潮位间的关系进行分析。监测结果显示,本次监测条件下波浪最大作用深度介于0.5~1.5 m之间,超过该作用深度后孔压无明显变化。土体内部孔隙水压力的变化主要由潮位和波高决定,潮位的作用可使孔压缓慢平滑的变化且对超孔压无影响;波高的作用可使孔压快速、剧烈地振荡并导致超孔压的出现。  相似文献   

10.
The evaluation of seabed response under wave loading is important for prediction of stability of foundations of offshore structures. In this study, a stochastic finite element model which integrates the Karhunen-Loève expansion random field simulation and finite element modeling of wave-induced seabed response is established. The wave-induced oscillatory response in a spatially random heterogeneous porous seabed considering cross-correlated multiple soil properties is investigated. The effects of multiple spatial random soil properties, correlation length and the trend function (the relation of the mean value versus depth) on oscillatory pore water pressure and momentary liquefaction are discussed. The stochastic analyses show that the uncertainty bounds of oscillatory pore water pressure are wider for the case with multiple spatially random soil properties compared with those with the single random soil property. The mean pore water pressure of the stochastic analysis is greater than the one obtained by the deterministic analysis. Therefore, the average momentary liquefaction zone in the stochastic analysis is shallower than the deterministic one. The median of momentary liquefaction depth generally decreases with the increase of vertical correlation length. When the slope of the trend function increases, the uncertainty of pore water pressure is greatly reduced at deeper depth of the seabed. Without considering the trend of soil properties, the wave-induced momentary liquefaction potential may be underestimated.  相似文献   

11.
Until now more than 14 subway lines are in operation and some new lines are being built in the coastal city Shanghai. The longitudinal settlement of shield tunnel has significant effect on the safety of the subway operation. In this paper, the deformation of the shield tunnel and the surrounding soil were analyzed by the establishment of a three-dimensional model. The vertical displacements of four paths (Path 1 is on the ground; Path 2 is at the top of the tunnel; Path 3 is in the middle of the tunnel; Path 4 is at the bottom of the tunnel) are affected by the nature of the soil. The horizontal displacement is smaller than the vertical displacement and horizontal displacement of the clay is larger than that of the sand. The distribution of the pore pressure changes with soil properties around the tunnel. The pore pressure of the sand layer is larger than that of the clay layer at the same depth of underlying soil.  相似文献   

12.
ABSTRACT

The elastic mechanical response of porous materials under a heat source has many applications in civil engineering and has received considerable attention in the geotechnical literature. In this paper, a Kelvin viscoelastic model is combined with the thermohydromechanical governing equations for marine clay and solved using a numerical inversion of the inverse Laplace transform in the time domain. After validation against existing analytical solutions, numerical parametric studies are conducted to investigate the influence of viscosity on temperature, excess pore pressure, and displacement. It is shown that viscosity has little influence on temperature, a modest influence on displacements, and a quite significant influence on excess pore pressure.  相似文献   

13.
波浪作用下单桩基础周围海床液化机制研究   总被引:1,自引:1,他引:0  
建立波浪作用下单桩周围三维海床动力响应模型,考虑自重影响下的海床长时间固结过程。采用已有物理模型试验数据对模型进行验证,证实其具有较好的适用性。模拟波浪作用下单桩周围三维海床液化区域,通过定量分析超孔隙水压力和土体初始有效应力的变化,讨论单桩插入深度对海床液化的影响机制。研究表明,单桩插入深度发生变化时,土体初始有效应力对海床液化的影响要大于超孔隙水压力,且影响程度随着插入深度的增加而逐渐增大。  相似文献   

14.
Extreme waves can induce seepage in a seabed and cause problems to marine structures in coastal regions. In this study, the seepage under cnoidal waves was studied using the transient seepage equation. An analytical solution is presented for the pore pressure in a seabed of defined thickness. Parametric studies were carried out to examine the influence of air content in the pore water, and of the soil hydraulic conductivity on the seepage. It has been shown that the air content and the soil hydraulic conductivity can affect the pore pressure response significantly. An increase in the air content or a decrease in the soil hydraulic conductivity will increase the magnitude of the pore pressure gradient and results in the pore pressure varying sharply. The liquefaction potential of a seabed under cnoidal waves is discussed. Consequently, comparative studies are carried out to show that the soil shear modulus and Poisson constant can influence the difference between the transient seepage equation and Biot's equation, and the transient seepage equation is a limit of Biot's equation.  相似文献   

15.
The linear theory of long waves was applied to study horizontal motions of the water layer in a rotating ocean which appear after tsunami generation by an earthquake. The structures of residual potential and eddy fields are analyzed on the basis of the analytical solution of a model axisymmetric problem for an ocean of constant depth. The estimates of the horizontal displacements of water particles, velocity of the eddy current, and energy of the geostrophic eddy are calculated for typical conditions of the tsunami source. Particular features of the residual fields related to the existence of stable stratification are considered. Static and dynamic numerical models are described that allow us to calculate the residual potential field and its evolution related to the realistic events. The field of residual horizontal displacements of water particles for the catastrophic earthquake near the coasts of Japan on March 11, 2011, is calculated and analyzed.  相似文献   

16.
Experiments on three types of soil (d50=0.287, 0.057 and 0.034 mm) with pipeline(D=4 cm) either half buried or resting on the seabed under regular wave or combined with current actions were conducted in a large wave flume to investigate characteristics of soil responses. The pore pressures were measured through the soil depth and across the pipeline. When pipeline is present the measured pore pressures in sandy soil nearby the pipeline deviate considerably from that predicted by the poro-elasticity theory. The buried pipeline seems to provide a degree of resistance to soil liquefaction in the two finer soil seabeds. In the silt bed, a negative power relationship was found between maximum values of excess pore pressure pmax and test intervals under the same wave conditions due to soil densification and dissipation of the pore pressure. In the case of wave combined with current, pore pressures in sandy soil show slightly decrease with time, whereas in silt soil, the current causes an increase in the excess pore pressure build-up, especially at the deeper depth. Comparing liquefaction depth with scour depth underneath the pipeline indicates that the occurrence of liquefaction is accompanied with larger scour depth under the same pipeline-bed configuration.  相似文献   

17.
波浪作用下粉质土海床的液化是影响海上平台、海底管线等海洋构筑物安全的灾害之一。在进行构筑物设计中应考虑海床液化的深度问题,而液化土体对下部海床的界面波压力是计算海床孔隙水压力增长以及液化深度的重要参量。本文基于波致粉土海床自上而下的渐进液化模式,利用双层流体波动理论,推导了考虑海床土体黏性的海床界面波压力表达式,并与不考虑黏性时的界面波压力进行了比较分析。结果表明,计算液化后土体界面波压力时,是否考虑液化土体的黏性对结果影响较大,进而可能影响粉质土海床液化深度的确定。  相似文献   

18.
D.-S. Jeng  H. Zhang   《Ocean Engineering》2005,32(16):1950-1967
The evaluation of the wave-induced liquefaction potential is particularly important for coastal engineers involved in the design of marine structures. Most previous investigations of the wave-induced liquefaction have been limited to two-dimensional non-breaking waves. In this paper, the integrated three-dimensional poro-elastic model for the wave-seabed interaction proposed by [Zhang, H., Jeng, D.-S., 2005. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: I. A sloping seabed. Ocean Engineering 32(5/6), 701–729.] is further extended to simulate the seabed liquefaction potential with breaking wave loading. Based on the parametric study, we conclude: (1) the liquefaction depth due to breaking waves is smaller than that of due to non-breaking waves; (2) the degree of saturation significantly affects the wave-induced liquefaction depth, and no liquefaction occurs in full saturated seabed, and (3) soil permeability does not only significantly affect the pore pressure, but also the shear stresses distribution.  相似文献   

19.
ABSTRACT

Geotechnical strata are often treated as horizontally homogeneous for hydromechanical analysis due to the vertical deposition of geological layers; however, such a treatment becomes no longer valid when vertical drilling or construction causes the localized disturbance of subsurface, which would result in radial heterogeneity of geomaterials. This paper presents a poroelastic solution for the saturated multilayered cylinder where multilayer is used to represent radial heterogeneity. After the application of Laplace transform, the governing equations in cylindrical coordinates are derived to obtain the stiffness matrix between stresses, displacements, and pore water pressure. The global matrix is assembled by the boundary conditions and the compatibility of interfaces between adjacent layers. Under time-dependent horizontal compression loads, a parametric study is performed for a cylinder comprised of two layers with distinct properties, and the results show that the load frequency and radial heterogeneity play a significant role in hydromechanical behavior of geomaterials: (1) the time-varying loading can induce a negative pore pressure, and the influence of cyclic loading with a high frequency is limited near the outer surface; (2) the radial heterogeneity due to permeability and compressibility affects the development of pore pressure.  相似文献   

20.
Jaw-Fang Lee  Yo-Ming Cheng   《Ocean Engineering》2007,34(11-12):1690-1700
This study presents an analytical solution for the problem of waves passing a submerged porous structure, using a multi-region method in the solution scheme considering the characteristics of geometry and composing materials of the porous structure. Using the flux and pressure conditions on horizontal boundaries and interfaces, the orthogonal property of wave motion within the porous layers through water depth is derived, and applied in the solution process. The flux and pressure conditions on vertical boundaries and interfaces are integrated to give a set of linear matrix equations, through which the unknown coefficients are solved. Comparisons of the present method with previous studies are preceded in verification, which suggests the validity and practicability of the present study, with a further expectation of extending our work to build a mild-slope equation over multiple-layer porous medium in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号