首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

2.
Two mineralogically different rare metal granites located in two distinct terranes from the Tuareg area are compared: the Tin-Amzi granite in the north of the Laouni Terrane and the Ebelekan granite in the Assodé–Issalane Terrane.The Tin-Amzi granite is enclosed within Eburnean granulitic gneisses, and consists of albite, quartz, protolithionite, K-feldspar and topaz granite (PG). The accessory minerals include columbite tantalite, U- and Hf-rich zircon, Th-uraninite, wolframoixiolite and wolframite. This facies is characterised by a mineralogical evolution from the bottom to the top underlined by a strong resorption of K-feldspar and albite and the crystalliK-feldspar of more abundant topaz and protolithionite II which is further altered in muscovite and Mn-siderite. It is underlain by an albite, K-feldspar, F-rich topaz, quartz and muscovite granite (MG), with W–Nb–Ta oxides, wolframite, Nb-rutile, zircon and scarce uranothorite as accessories.The Ebelekan granite intrudes into a coarse-grained biotite granite enclosed within upper amphibolite-facies metasediments. It comprises a zinnwaldite, albite, topaz porphyritic granite (ZG) with “snow ball” quartz and K-feldspar. The accessories are zircon, monazite, uranothorite, Ta bearing cassiterite, columbite tantalite and wodginite. It is capped by a banded aplite-pegmatite (AP).The geochemistry of Tin-Amzi and Ebelekan granites is nearly comparable. Both are peraluminous (A/CNK=1.10–1.29; ASI=1.17–1.31), sodolithic and fluorine rich with high SiO2, Al2O3, Na2O+K2O, Rb, Ga, Li, Ta, Nb, Sn and low FeO, MgO, TiO2, Ba, Sr, Y, Zr and REE contents. These rare metal Ta bearing granites belong to the P-poor subclass, relating to their P2O5 content ( 0.03–0.15 wt.%). Nevertheless, they are distinguished by their concentration of W, Sn and Ta. The Tin-Amzi granite is W–Ta bearing with high W/Sn ratio whereas the Ebelekan granite is Ta–Sn bearing with insignificant W content.At Tin-Amzi the W–Nb–Ta minerals define a sequence formed by W-columbite tantalite followed by wolframoixiolite and finally wolframite showing the effect of hydrothermal overprinting with an extreme W enrichment of the fluids. At Ebelekan, the Sn–Nb–Ta oxides follow a Mn sequence: manganocolumbite→manganotantalite→wodginite+titanowodginite→cassiterite that represents a trend of primary crystallisation resulting from progressive substitution Fe→Mn and Nb→Ta during the magmatic fractionation.  相似文献   

3.
Cassiterites from both the Beauvoir and Montebras geanited of France are typically rich in trace elements such as Nb and Ta, and contain quite a number of inclusions of columbite (dominantly manganocolumbite).Two thin sections of cassiterite crystals have been prepared for Raman microprobe analysis).The spectra obtained from different parts of the cassiterites show that the vibra-tion frequency of the A1g peak decreases with increasing Nb ,Ta,Fe and Mn atomic contents.It is worthy to note that a new peak (named the “An peak”) has been reported for the first time in the part with oriented columbite inclusions.The vibration frequency varies from 827 to 830 cm^-1.The presence of th enew peak may be attributed to structural changes of cassiterite due to the excess of Nb and Ta in the lattice and the exsolution of columbite inclusions in cassiterite.  相似文献   

4.
The Songshugang granite, hidden in the Sinian metasedimentary stratum, is a highly evolved rare-element granite in northeastern Jiangxi province, South China. The samples were systematically taken from the CK-102 drill hole at the depth of 171–423 m. Four types of rocks were divided from the bottom upwards: topaz albite granite as the main body, greisen nodules, topaz K-feldspar granite and pegmatite layer. Electron-microprobe study reveals that the rare-element minerals of the Songshugang granite are very different from those of other rare-element granites. Mn# [Mn/(Fe + Mn)] and Ta# [Ta/(Nb + Ta)] of columbite-group minerals and Hf# [Hf/(Zr + Hf)] of zircon are nearly constant within each type of rocks. However, back-scattered electron imaging revealed that Nb–Ta oxides and zircon of the Songshugang granite, especially those of topaz albite granite, topaz K-feldspar granite and greisen, are commonly characterized by a specific two-stage texture on the crystal scale. The early-stage Nb–Ta oxide is simply subhedral-shaped columbite-(Fe) (CGM-I) with low Mn# (0.16–0.37) and Ta# (0.05–0.29). Columbite-(Fe) is penetrated by the later-stage tantalite veinlets (CGM-II) or surrounded by complex Nb–Ta–Sn–W mineral assemblages, including tantalite-(Fe), wodginite (sl), cassiterite, and ferberite. Tantalite has wide range of Mn# values (0.15–0.88) from Fe-dominance to Mn-dominance. Wodginite with Ta>Nb has large variable concentrations of W, Sn and Ti. Cassiterite and ferberite are all enriched in Nb and Ta (Nb2O5 + Ta2O5 up to 20.12 wt.% and 31.42 wt.%, respectively), with high Ta# (>0.5). Similar to Nb–Ta oxides and Nb–Ta–Sn–W mineral assemblages, the early-stage zircon is commonly included by the later-stage zircon with sharply boundary. They have contrasting Hf contents, and HfO2 of the later-stage zircon is up to 28.13 wt.%. Petrographic features indicate that the early-stage of columbite and zircon were formed in magmatic environment. However, the later-stage of rare-element minerals were influenced by fluxes-enriched fluids. Tantalite, together with wodginite, cassiterite, and ferberite implies a Ta-dominant media. An interstitial fluid-rich melt enriched in Ta and flux at the magmatic–hydrothermal transitional stage is currently a favored model for explaining the later-stage of rare-element mineralization.  相似文献   

5.
Both Nb–Ta-mineralized and Nb–Ta-poor syenitic dikes in the Panxi region (SW China) are spatially and temporally associated with syenitic plutons, which are part of the ~ 260 Ma Emeishan large igneous province. These syenitic dikes are NW-striking, and have width varying from 1 to 5 m and length from 50 to 300 m. The dikes are mainly composed of K-feldspar, albite, aegirine and arfvedsonite, however, mineral modes are different in the Nb–Ta-mineralized and Nb–Ta-poor syenitic dikes. The major Nb–Ta-bearing mineral in the dikes is pyrochlore, which is closely associated with albite and occurs in places with intensive albitization. Rocks of the Nb–Ta-mineralized syenitic dikes contain more albite and less K-feldspar than the Nb–Ta-poor dikes, and have compositions more evolved than the Nb–Ta-poor dikes, indicating that the Nb–Ta-mineralized syenitic dikes formed from a highly evolved magma. We analyzed the B concentrations and B isotopic compositions of the samples of both Nb–Ta-mineralized and Nb–Ta-poor syenitic dikes and associated syenitic pluton using a single column purification method and ICP-AES and MC-ICP-MS techniques. The samples of the Nb–Ta-mineralized syenitic dikes have whole-rock B concentrations ranging from 11.4 to 23.9 ppm and δ11B values from − 17.95 to − 14.54‰, whereas the samples of the Nb–Ta-poor dikes and syenitic plutons have B concentrations varying from 3.32 to 16.5 ppm and δ11B values from − 13.45 to − 10.02‰. The high B concentration of the Nb–Ta-mineralized dikes relative to the Nb–Ta-poor dikes is consistent with that B is incompatible and tends to be rich in more evolved magma. The relatively low δ11B values of the Nb–Ta-mineralized dikes indicate that the B isotopes may have fractionated between fluids and rocks in a transitional, magmatic–hydrothermal stage. We propose that the highly evolved magmas in a transitional, magmatic–hydrothermal stage may have Nb– and Ta–fluorine complexes dissolved in the hydrothermal fluids in the presence of Na+. Albite crystallization due to intensive albitization in this stage resulted in the decrease of Na+ in the fluids, decomposing the Nb– and Ta–fluorine complexes. The released Nb and Ta from the complexes were then dissolved in the fluids and finally entered the lattice of pyrochlore crystals in the stage of albitization.  相似文献   

6.
The geochemistry of K‐feldspar for K, P, Sr, Ba, Rb, Cs, Ga, and of muscovite for the same elements plus Nb and Ta, was used for proving the parental relationships of S‐type granites and LCT (Li, Cs, Ta) rare‐element pegmatites in the southernmost pegmatitic field of the Pampean pegmatite province in Argentina. The variation of K/Rb‐Cs, K/Cs‐Rb, K/Rb‐Rb/Sr, K/Rb‐Ba in K‐feldspar from the granites and pegmatites show that they form an association with the evolutional sequence: granites → barren‐ to transitional pegmatites → beryl type, beryl‐columbite‐phosphate pegmatites → complex type of spodumene subtype pegmatites → albite‐spodumene type → albite type pegmatites. This sequence reflects the regional distribution of the different magmatic units. The Ta‐Cs diagram for muscovite reveals that none of the studied pegmatites exceed the threshold established in previous studies for being considered with important tantalum oxide mineralization. The granites and pegmatites constitute a rare‐element pegmatitic field in which different magmatic units form a continuous fractionation trend, extended from the less evolved granitic facies to the most geochemically specialized pegmatites  相似文献   

7.
阿尔泰三号伟晶岩脉岩浆演化过程中铌,钽示踪的研究   总被引:4,自引:2,他引:2  
对三号伟晶岩脉某些不相容元素的分异与演化进行了研究,结果表明,岩浆作用中不相容元素Nb,Ta的不相容性在花岗伟晶岩浆演化过程中已大大减弱,Nt,Ta,独立矿物如铌钽铁矿,细晶石等形成于伟晶质熔体的各个演化阶段,依据地质观察和分析数据对三号伟晶岩脉的分离结晶过程进行恢复,同时,计算了Nb,Ta在熔体与白云母,微斜长石,钠长石,锂辉石等主要矿物之间的分配系数,对Nb,Ta的成矿作用也进行了讨论。  相似文献   

8.
The Nuweibi albite granite is one of 14 known Sn-Ta-Nb bearing granitoids in the Eastern Desert region of Egypt. The granite is a highly leucocratic, albite-rich rock with accessory columbite-tantalite, cassiterite, microlite and ixiolite as well as topaz, garnet and white mica. Ages of 450–600 Ma were obtained from zircons by the 207Pb/206Pb evaporation method. Great uncertainty is caused by the small size and poor quality of the grains, but the precision is sufficient to indicate that the granite is late- or postorogenic with respect to the Panafrican orogeny. The Nuweibi granite is divided into a western and an eastern part by a regional fault. Both parts of the granite are compositionally similar but there are important differences and a clear compositional gap between them, so they are considered separate facies of an intrusive complex. The eastern part of the granite is more highly mineralized, has higher modal albite contents and higher Ta/Nb ratios, both in the whole rock and in the ore minerals. It is suggested that the two parts of the granite evolved from a common source and were emplaced sequentially, the eastern part representing a later, more fractionated magma. Textural evidence strongly suggests that the granite has a magmatic origin overall, but disturbance of geochemical trends at the whole-rock scale and at the scale of zoning profiles in individual grains of columbite-tantalite indicate post-magmatic overprinting. By analogy with other Ta-bearing albite granites, the sodic bulk composition of the Nuweibi granite can be explained by fluorine enrichment in the magma. Fluorine contents in the magma were high enough to stabilize topaz, and muscovites contain 2–4 wt.%. F. However, whole-rock F contents are low. We speculate that the low Ca, Al and P contents of the magma prevented abundant F-bearing minerals to form and led to loss of fluorine to now-eroded roof rocks. Received: 8 November 1995 / Accepted: 10 June 1996  相似文献   

9.
Textural and geochemical studies of inclusions in topaz from greisens in the Hensbarrow topaz granite stock (St. Austell, Cornwall) are used to constrain the composition of fluids responsible for late stage greisening and mineralisation. The topaz contains an abundant and varied suite of inclusions including aqueous liquid + vapour (L + V), quartz, zinnwaldite, albite, K-feldspar, muscovite, ilmenorutile, apatite, columbite, zircon, varlamoffite [(Sn, Fe)(O, OH)2] and qitianlingite [(Fe+2,Mn+2)2(Nb,Ta)2W+6O10]. Primary L + V inclusions in topaz show relatively high T h (mainly 300 to >500 °C) and a narrow range of salinities (23–30 wt % NaCl equivalent) compared with those in greisen quartz (150–450 °C, 0–50 wt % NaCl equivalent). Textures indicate that topaz formed earlier than quartz and the fluid inclusion data are interpreted as indicating a cooling of the hydrothermal fluids during greisenisation, mixing with meteoric waters and a decrease in pressure causing intermittent boiling. The presence of early-formed albite and K-feldspar as inclusions in the topaz is likely to indicate that the greisen-forming fluid became progressively more acid during greisenisation. The most distinctive inclusions in the topaz are wisp- and bleb-shaped quartz, < 50 μm in size, which show textural characteristics indicating former high degrees of plasticity. They often have multiple shrinkage bubbles at their margins rich in Sn, Fe, Mn, S and Cl and, more rarely, contain euhedral albite, K-feldspar, stannite or pyrrhotite crystals up to 40 μm in size. The quartz inclusions show similar morphologies to inclusions in topaz from quartz-topaz rocks elsewhere which have been interpreted as trapped “silicate melt”. Their compositions are, however, very different to those expected for late stage topaz-normative granitic melts. From their textural and chemical characteristics they are interpreted as representing crystallised silica colloid, probably trapped as a hydro gel during greisenisation. There is also evidence for the colloidal origin of inclusions of varlamoffite in the topaz. These occurrences offer the first reported evidence in natural systems for the formation of colloids in high temperature hydrothermal fluids. Their high ore carrying potential is suggested by the presence of varlamoffite and the occurrence of stannite, pyrrhotite and SnCl within the quartz inclusions. Received: 9 April 1996 / Accepted: 12 November 1996  相似文献   

10.
Rare metal mineralization of Sn, Nb-Ta and W is encountered in the Gebel Dihmit area (GDA), southeastern Aswan, Egypt. The mineralization is related to muscovite granites and their pegmatite derivatives. The pegmatites are divided into three types according to their main mineral assemblages: K-feldspar-muscovite-tourmaline, K-feldspar-albite-muscovite and albite-K-feldspar-lepidolite veins. Petrogenetic studies indicate that Sn and Nb-Ta mineralization extends from the late-magmatic stage to the pegmatite and hydrothermal stages of the (GDA) suite. The albite-K-feldspar-lepidolite granite is composed dominantly of albite, lepidolote, and quartz, with topaz, K-feldspar and amblygonite. The accessory minerals are zircon, monazite, pollucite, columbite-tantalite, microlite and Ta-rich cassiterite. Phenocrysts of quartz, topaz and K-feldspar contain abundant inclusions of albite laths and occasional lepidolite crystals along growth zones (snowball texture), indicating simultaneous crystallization from a subsolvus, residual magma. The origin of the pegmatites is attributed to extreme differentiation by fractional crystallization of a granitic magma. The economic potential for rare metals was evaluated in the geochemical discrimination diagrams. Accordingly, some of the pegmatites are not only highly differentiated in terms of alkalis, but also the promising targets for small-scale Ta and, to a less extent, Sn. The pegmatites also provide the first example of Fe-Mn and Nb-Ta fractionation in successive generations of granites to cassiterite-bearing pegmatites, which perfectly ex- hibit similar fractionation trends established for primary columbite-tantalite in the corresponding categories of pegmatites. Uranium and Th of magmatic origin are indicated by the presence of thorite and allanite, whereas evidence of hydrothermal mineralization is the alteration of rock- foring minerals such as feldspar and the formation of secondary minerals such as uranophane..  相似文献   

11.
A.M.R. Neiva   《Ore Geology Reviews》2008,33(3-4):221-238
Cassiterite and wolframite compositions from Sn > W- and W > Sn-bearing quartz veins in Northern and Central Portugal are compared to provide evidence on fluid compositions. In Sn > W-bearing quartz veins, euhedral cassiterite shows sequences of alternating parallel darker and lighter zones. The darker zones are pleochroic, oscillatory zoned, exhibit exsolutions of columbite and ixiolite and are richer in Nb, Ta and Fe than the lighter zones which consist of nearly pure SnO2. Cassiterite from W > Sn-bearing quartz veins is usually zoned, with homogeneous and slightly pleochroic darker zones, which are chemically similar to lighter zones. Both zones have inclusions of rutile and rare ilmenite. The darker zones of cassiterite from the former veins are richer in Nb, Ta and Fe contents and poorer in Ti than the darker and lighter zones of cassiterite from the latter veins. This is attributed to differences in the composition of magmatic hydrothermal fluids.Wolframite compositions from Sn > W- and W > Sn-bearing quartz veins do not show any significant distinction, because they precipitate from relatively similar magmatic hydrothermal fluids. In some deposits, most wolframite crystals are homogeneous, but others are heterogeneous. Inner patches, rich in a hübnerite component, rarely occur in crystals from the Filharoso and Panasqueira deposits. Zoned crystals, showing an increase in Fe and a decrease in Mn from core to rim, were found in the Vale das Gatas deposit. Complex oscillatory zoned crystals occur. In the Carris deposit, later wolframite contains inclusions of scheelite, partially replaces it and is richer in Fe and poorer in Mn than earlier wolframite. Wolframite from Sn > W-bearing quartz veins in the Argozelo deposit and W > Sn-bearing quartz veins from Vale das Gatas and Panasqueira deposits has significant Nb content. This does not depend on the Fe and Mn content of the wolframite, but W content is negatively correlated with Nb content. Only very rare single crystals of wolframite show an increase in W and a decrease in Nb from core to rim. Sn > W-bearing quartz veins contain wolframite poorer in Nb than the darker zones of cassiterite, which exsolved columbite and ixiolite. In W > Sn-bearing quartz veins from Panasqueira and Vale das Gatas, the wolframite has a higher Nb content than the cassiterite, which contains rutile inclusions enriched in Nb, because cassiterite and wolframite are derived from two distinct magmatic hydrothermal fluids of different age. The fluid responsible for wolframite precipitation will have a similar composition to that resulting from the evolution of the fluid responsible for cassiterite precipitation in the Sn > W-bearing quartz veins.  相似文献   

12.
The Zr/Hf ratio as a fractionation indicator of rare-metal granites   总被引:1,自引:0,他引:1  
The Zr-Hf geochemical indicator, i.e., the Zr/Hf ratio (in wt %) in granitic rocks is proposed to be used as the most reliable indicator of the fractionation and ore potential of rare-metal granites. It was empirically determined that the fractional crystallization of granitic magma according to the scheme granodiorite → biotite granite → leucogranite → Li-F granite is associated with a decrease in the Zr/Hf ratio of the granites. The reason for this is the stronger affinity of Hf than Zr to granitic melt. This was confirmed by experiments on Zr and Hf distribution between granitic melt and crystals of Hf-bearing zircon (T = 800°C, P= 1 kbar). The application of the Zr/Hf indicator was tested at three classic territories of rare-metal granites: eastern Transbaikalia, central Kazakhstan, and the Erzgebirge in the Czech Republic and Germany. The reference Kukul’bei complex of rare-metal granites in eastern Transbaikalia (J3) is characterized by a uniquely high degree of fractionation of the parental granitic melt, with the granites and their vein derivatives forming three intrusive phases. The biotite granites of phase 1 are barren, the leucogranites of phase 2 are accompanied by greisen Sn-W mineral deposits (Spokoininskoe and others), and the final dome-shaped stocks of amazonite Li-F granites of phase 3 host (in their upper parts) Ta deposits of the “apogranite” type: Orlovka, Etyka, and Achikan. The Kukul’bei Complex includes also dikes of ongonites, elvanes, amazonite granites, and miarolitic pegmatites. All granitic rocks of the complex are roughly coeval and have an age of 142±0.6 Ma. The Zr/Hf ratio of the rocks systematically decreases from intrusive phase 1 (40–25) to phases 2 (20–30) and 3 (10–2). Compared to other granite series, the granites of the Kukul’bei Complex are enriched in Rb, Li, Cs, Be, Sn, W, Mo, Ta, Nb, Bi, and F but are depleted in Mg, Ca, Fe, Ti, P, Sr, Ba, V, Co, Ni, Cr, Zr, REE, and Y. From earlier to later intrusive phases, the rocks become progressively more strongly enriched or depleted in these elements, and their Zr/Hf ratio systematically decreases from 40 to 2. This ratio serves as a reliable indicator of genetic links, degree of fractionation, and rare-metal potential of granites. Greisen Sn, W, Mo, and Be deposits are expected to accompany granites with Zr/Hf < 25, whereas granites related to Ta deposits should have Zr/Hf < 5.  相似文献   

13.
癞子岭岩体具有极好的垂向分带性,从下部到顶部包括了花岗岩、云英岩和伟晶岩,其中云英岩以其厚度巨大,云母类型属于铁锂云母,黄玉含量高,W-Sn-Nb-Ta含量高,而区别于其他地区云英岩。通过对癞子岭云英岩进行岩石学、地球化学和矿物学的研究,本文得出:癞子岭云英岩是高硅的强过铝质岩石类型,全碱含量低(3~4.3 wt%),富集挥发组分,全岩Zr/Hf(~8)和Nb/Ta(~1.7)比值低。造岩矿物铁锂云母中Nb(~74×10~(-6))、Ta(~66×10~(-6))、W(~23×10~(-6))、Sn(~75×10~(-6))等成矿元素含量较高。副矿物锆石自形且成分均一,含有HfO_2约10 wt%,Zr/Hf比值最低为5,与云英岩下部的癞子岭钠长花岗岩中的锆石成分有连续过渡的关系。这些特征与南岭地区高演化稀有金属花岗岩或伟晶岩相当,体现了相近的演化程度。癞子岭云英岩中有明显的Nb-Ta-W-Sn成矿作用发生,主要形成铌铁矿族矿物、锡石和黑钨矿,成分和结构均具有岩浆成因特征。花岗质熔体中含有大量挥发组分Li和F,结晶出黄玉和Li-F云母,F在稀有金属的成矿作用和云英岩的成岩过程中发挥了非常重要的作用,成矿作用发生在岩浆演化的晚期并伴随有流体作用。因此,云英岩可能是钠长花岗岩高度分异演化之后的特殊产物,这为研究花岗岩岩浆-热液体系成岩成矿过程提供了新的窗口。  相似文献   

14.
内蒙古赵井沟大型铌钽矿床地质特征及成因   总被引:8,自引:2,他引:6  
内蒙古武川县赵井沟矿床是近年来在内蒙古中部地区找到的一处大型铌钽矿床.铌钽氧化物储量为8000余吨(钽氧化物含量大于50%),其中,ω(Nb2O5)和ω(Ta2O5)的平均含量为0.011%和0.012%.铌钽矿化主要在早二叠世碱长花岗岩类侵入杂岩体内,呈浸染状和条带状产出,并且构成似层状、脉状和透镜状矿体.研究表明,碱长花岗岩、碱长花岗细晶岩和碱长花岗伟晶岩锆石U-Pb同位素年龄值分别为(277.14±0.82) Ma、(277.0±2.1) Ma和(276.6±2.1) Ma.鉴于铌钽矿化呈浸染状在含矿侵入杂岩体内产出,推测赵井沟矿床的成矿作用与海西期构造-岩浆活动有关.古大陆块体伸展构造条件下,富钠质钙-碱性岩浆作用为铌钽矿床的形成提供了动力和物质来源,而断裂构造为成矿物质沉淀聚集创造了空间条件.赵井沟矿床属富钠的过铝质花岗岩型铌钽矿床.  相似文献   

15.
The mechanism of Nb-, Ta-mineralizatio is discussed in the light of the properties of Nb-, Ta-complexes in different phases. Experiments show that Nb and Ta are essentially enriched in the melts when Nb-, Ta-bearing albite granites are completely melted (800–850°C) and in equilibrium with a HF-bearing vapor phase. It is also demonstrated from the experiments that the hydrolysis of Nb-, Ta-fluorine complexes in aqueous solutions takes place with increasing temperature reaching a maximum value in the vicinity of critical temperature and becoming stable under super-critical conditions. Under this circumstance, Nb-, Ta-complexes can be transported in the vapor phase. Ta exhibits a great ability of transport in the vapor phase as compared with Nb, while Nb is more soluble than Ta under hydrothermal conditions.  相似文献   

16.
I. A. Andreeva 《Petrology》2016,24(5):462-476
Melt inclusions were studied by various methods, including electron and ion microprobe analysis, to determine the compositions of melts and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey massif in Mongolia. Primary crystalline and coexisting melt inclusions were found in quartz from the rare-metal granites of intrusive phase V. Among the crystalline inclusions, we identified potassium feldspar, albite, tuhualite, titanite, fluorite, and diverse rare-metal phases, including minerals of zirconium (zircon and gittinsite), niobium (pyrochlore), and rare earth elements (parisite). The observed crystalline inclusions reproduce almost the whole suite of major and accessory minerals of the rare-metal granites, which supports the possibility of their crystallization from a magmatic melt. Melt inclusions in quartz from these rocks are completely crystallized. Their daughter mineral assemblage includes quartz, microcline, aegirine, arfvedsonite, polylithionite, a zirconosilicate, pyrochlore, and a rare-earth fluorocarbonate. The melt inclusions were homogenized in an internally heated gas vessel at a temperature of 850°C and a pressure of 3 kbar. After the experiments, many inclusions were homogeneous and consisted of silicate glass. In addition to silicate glass, some inclusions contained tiny quench zircon crystals confined to the boundary of inclusions, which indicates that the melts were saturated in zircon. In a few inclusions, glass coexisted with a CO2 phase. This allowed us to estimate the content of CO2 in the inclusion as 1.5 wt %. The composition of glasses from the homogeneous melt inclusions is similar to the composition of the rare-metal granites, in particular, with respect to SiO2 (68–74 wt %), TiO2 (0.5–0.9 wt %), FeO (2.2–4.6 wt %), MgO (0.02 wt %), and Na2O + K2O (up to 8.5 wt %). On the other hand, the glasses of melt inclusions appeared to be strongly depleted compared with the rocks in CaO (0.22 and 4 wt %, respectively) and Al2O3 (5.5–7.0 and 9.6 wt %, respectively). The agpaitic index is 1.1–1.7. The melts contain up to 3 wt % H2O and 2–4 wt % F. The trace element analysis of glasses from homogenized melt inclusions in quartz showed that the rare-metal granites were formed from extensively evolved rare-metal alkaline melts with high contents of Zr, Nb, Th, U, Ta, Hf, Rb, Pb, Y, and REE, which reflects the metallogenic signature of the Khaldzan Buregtey deposit. The development of unique rare metal Zr–Nb–REE mineralization in these rocks is related to the prolonged crystallization differentiation of melts and assimilation of enclosing carbonate rocks.  相似文献   

17.
石碌铁矿床位于海南岛五指山褶皱带西段.矿区内外发育以闪长玢岩脉为主的中基性脉岩.LA-ICP-MS锆石U-Pb定年厘定闪长玢岩脉年龄为248±1 Ma(MSWD=0.4),为早三叠世岩浆活动的产物,与同时代的富碱侵入岩体构成“双峰式”侵入岩.闪长玢岩脉为钾玄质系列,低SiO2(49.18%~55.25%)、高Al2O3(14.36%~16.75%)、FeOt(5.98%~10.07%)和MgO(3.80%~5.43%),富集LILE和LREE,亏损HFSE.Nb/Ta、Zr/Hf和La/Nb比值分别为15.33~17.80、36.00~45.23和2.59~8.62;Pb同位素组成(206Pb/204Pb)t=18.087~18.483,(207Pb/204Pb)t=15.473~15.587,(208Pb/204Pb)t=38.272~38.817.LREE/HFSE和LILE/HFSE比值及Pb同位素组成显示为富集地幔来源,但混染有少量的地壳物质.HFSE判别图解指示闪长玢岩脉形成于大陆边缘弧伸展背景,与晚二叠世印支板块NE向向华南地块俯冲造成的大陆边缘弧局部伸展有关.   相似文献   

18.
法国Beauvoir和Montebras花岗岩中富铌钽锡石的拉曼光谱特征   总被引:2,自引:0,他引:2  
法国Beauvoir花岗岩和Montebras花岗岩中的锡石都含有较丰富的微量元素,如Nb、Ta,并含有铌钽矿包裹体。将锡石晶体制成光薄片,运用拉曼探针,对不同部位进行的研究表明,锡石的A_(1g)峰的振动频率与其所含的Nb、Ta、Fe、Mn含量成反比。值得指出的是,在富含铌钽包裹体的部分,发现了一个新的拉曼光谱峰(定为An峰),其振动频率为827—830cm~(-1),对其进行的研究表明,该峰的出现与锡石晶格中(Nb,Ta)的过量和铌钽矿包裹体的出溶所造成的晶体结构的变化有关。  相似文献   

19.
The Mangabeira deposit is the only known Brazilian tin mineralization with indium. It is hosted in the Paleo- to Mesoproterozoic Mangabeira within-plate granitic massif, which has geochemical characteristics of NYF fertile granites. The granitic massif is hosted in Archean to Paleoproterozoic metasedimentary rocks (Ticunzal formation), Paleoproterozoic peraluminous granites (Aurumina suite) and a granite–gneiss complex. The mineralized area comprises evolved Li-siderophyllite granite, topaz–albite granite, Li–F-rich mica greisens and a quartz–topaz rock, similar to topazite. Two types of greisens are recognized in the mineralized area: zinnwaldite greisen and Li-rich muscovite greisen, formed by metasomatism of topaz–albite granite and Li-siderophyllite granite, respectively. Cassiterite occurs in the quartz–topaz rock and in the greisens. Indium minerals, such as roquesite (CuInS2), yanomamite (InAsO4·2H2O) and dzhalindite (In(OH3)), and In-rich cassiterite, sphalerite, stannite group minerals and scorodite are more abundant in the quartz–topaz rock, and are also recognized in albitized biotite granite and in Li-rich muscovite greisen. The host rocks and mineralized zones were subsequently overprinted by the Brasiliano orogenic event.Primary widespread two-phase aqueous and rare coeval aqueous-carbonic fluid inclusions are preserved in quartz from the topaz–albite granite, in quartz and topaz from the quartz–topaz rock and in cassiterite from the Li-rich muscovite greisen. Eutectic temperatures are − 25 °C to − 23 °C, allowing modeling of the aqueous fluids in the system H2O–NaCl(–KCl). Rare three-phase H2O–NaCl fluid inclusions (45–50 wt.% NaCl equiv.) are restricted to the topaz–albite granite. Salinities and homogenization temperatures of the aqueous and aqueous-carbonic fluid inclusions decrease from the topaz–albite granite (15–20 wt.% NaCl equiv.; 400 °C–450 °C), to the quartz–topaz rock (10–15 wt.% NaCl equiv.; 250 °C–350 °C) and to the greisen (0–5 wt.% NaCl equiv.; 200 °C–250 °C). Secondary fluid inclusions have the same range of salinities as the primary fluid inclusions, and homogenize between 150 and 210 °C.The estimated equilibrium temperatures based on δ18O of quartz–mica pairs are 610–680 °C for the topaz–albite granite and 285–370 °C for the Li-rich muscovite greisens. These data are coherent with measured fluid inclusion homogenization temperatures. Temperatures estimated using arsenopyrite geothermometry yield crystallization temperatures of 490–530 °C for the quartz–topaz rock and 415–505 °C for the zinnwaldite greisens. The fluids in equilibrium with the topaz–albite granite have calculated δ18O and δD values of 5.6–7.5‰ and − 67 to − 58‰, respectively. Estimated δ18O and δD values are mainly 4.8–7.9‰ and − 60 to − 30‰, respectively, for the fluids in equilibrium with the quartz–topaz rock and zinnwaldite greisen; and 3.4–3.9‰ and − 25 to − 17‰, respectively, for the Li-rich muscovite greisen fluid. δ34S data on arsenopyrite from the quartz–topaz rock vary from − 1.74 to − 0.74‰, consistent with a magmatic origin for the sulfur. The integration of fluid inclusion with oxygen isotopic data allows for estimation of the minimum crystallization pressure at ca. 770 bar for the host topaz–albite granite, which is consistent with its evolved signature.Based on petrological, fluid inclusion and isotope data it is proposed that the greisens and related Mangabeira Sn–In mineralization had a similar hydrothermal genesis, which involved exsolution of F-rich, Sn–In-bearing magmatic fluids from the topaz–albite granite, early formation of the quartz–topaz rock and zinnwaldite greisen, progressive cooling and Li-rich muscovite greisen formation due to interaction with meteoric water. The quartz–topaz rock is considered to have formed in the magmatic-hydrothermal transition. The mineralizing saline and CO2-bearing fluids are interpreted to be of magmatic origin, based on the isotopic data and paragenesis, which has been documented as characteristic of the tin mineralization genetically related to Proterozoic within-plate granitic magmatism in the Goias Tin Province, Central Brazil.  相似文献   

20.
It is well established that the fractionation of Li–F granitic magmas at depth leads to the accumulation of flux elements such as F and Li, and metal cations such as Ta and Nb in residual melts. However, it remains to be determined whether magmatic fractionation is sufficient to concentrate Nb and Ta into economically significant quantities, and what role hydrothermal–metasomatic processes play in the formation of such ore deposits. In the literature, reliable data about the solubility of Ta and Nb in hydrothermal solutions is missing or incomplete. This study provides a quantitative experimental estimation of the possible contribution from hydrothermal processes in Ta enrichment in cupolas of albitized and greisenized Li–F granite. Experimental studies of Ta2O5 and columbite–tantalite (Mn,Fe)(Nb,Ta)2O6 solubility were carried out in fluoride solutions consisting of HF, NaF, KF, and LiF. At low fluoride concentrations (0.01 and 0.1 m), Ta2O5 solubility at 550°C and 100 MPa under Co–CoO oxidizing conditions is low (near 10?5–10?4 m) in all fluoride solutions (HF, NaF, KF, LiF). At high fluoride concentrations (1 and 2 m) the highest Ta2O5 concentrations (10?1 m) were detected in HF solutions. In KF, NaF, and LiF solutions, the Ta2O5 solubility is also high (10?3–10?2 m). The dependence of columbite–tantalite (Nb2O5-59 wt. %, Ta2O5-18 wt. %) solubility as a function of solution composition, T, and P has also been investigated. Tantalum and Nb concentrations have the highest values in HF solutions at reduced conditions (up to 10?3 to 10?2 m Ta in 1 m HF). In 1 m NaF solutions, the concentrations of Nb and Ta are, respectively, 2.5 and 3 orders of magnitude less than those in the 1 m HF solutions. Solubility of Ta and Nb in KF solutions has intermediate values. It is established that in NaF and KF solutions the dependence of solubility on pressure is distinctly negative. The Nb and Ta contents increase with increasing concentrations of HF and KF in solution, however, they do not change with increasing NaF concentration. In NaHCO3, Na2CO3, and HCl solutions columbite–tantalite solubility is low. Even in 1 m chloride solutions the content is within the limits of 10?5 m for Nb and 10?6 to 10?8 m for Ta. We conclude that hydrothermal transport of Ta and Nb is possible only in concentrated fluoride solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号