首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. Around a.d. 1300 the entire Pacific Basin (continental Pacific Rim and oceanic Pacific Islands) was affected by comparatively rapid cooling and sea‐level fall, and possibly increased storminess, that caused massive and enduring changes to Pacific environments and societies. For most Pacific societies, adapted to the warmer, drier, and more stable climates of the preceding Medieval Climate Anomaly (a.d. 750–1250), the effects of this A.D. 1300 Event were profoundly disruptive, largely because of the reduction in food resources available in coastal zones attributable to the 70–80‐centimeter sea‐level fall. This disruption was manifested by the outbreak of persistent conflict, shifts in settlements from coasts to refugia inland or on unoccupied offshore islands, changes in subsistence strategies, and an abrupt end to long‐distance cross‐ocean interaction during the ensuing Little Ice Age (a.d. 1350–1800). The A.D. 1300 Event provides a good example of the disruptive potential for human societies of abrupt, short‐lived climate changes.  相似文献   

2.
Lacustrine records from the northern margin of the East Asian monsoon generate a conflicting picture of Holocene monsoonal precipitation change. To seek an integrated view of East Asian monsoon variability during the Holocene, an 8.5-m-long sediment core recovered in the depocenter of Dali Lake in central-eastern Inner Mongolia was analyzed at 1-cm intervals for total organic and inorganic carbon concentrations. The data indicate that Dali Lake reached its highest level during the early Holocene (11,500–7,600 cal yr BP). The middle Holocene (7,600–3,450 cal yr BP) was characterized by dramatic fluctuations in the lake level with three intervals of lower lake stands occurring 6,600–5,850, 5,100–4,850 and 4,450–3,750 cal yr BP, respectively. During the late Holocene (3,450 cal yr BP to present), the lake displayed a general shrinking trend with the lowest levels at three episodes of 3,150–2,650, 1,650–1,150 and 550–200 cal yr BP. We infer that the expansion of the lake during the early Holocene would have resulted from the input of the snow/ice melt, rather than the monsoonal precipitation, in response to the increase in summer solar radiation in the Northern Hemisphere. We also interpret the rise in the lake level since ca. 7,600 cal yr BP as closely related to increased monsoonal precipitation over the lake region resulting from increased temperature and size of the Western Pacific Warm Pool and a westward shifted and strengthened Kuroshio Current in the western Pacific. Moreover, high variability of the East Asian monsoon climate since 7,600 cal yr BP, marked by large fluctuations in the lake level, might have been directly associated with variations in the intensity and frequency of the El Niño-Southern Oscillation (ENSO) events.  相似文献   

3.
Pollen and diatoms preserved in the radiocarbon dated sediments of Two Frog Lake in the Seymour-Belize Inlet Complex of the central mainland coast of British Columbia document postglacial climate change. Two Frog Lake was isolated from the sea prior to 11,040 ± 50 yr BP (13,030 cal. yr BP) when the climate was cool and dry, and open Pinus contorta woodlands covered the landscape. These woodlands were replaced by a mixed conifer forest ca. 10,200 yr BP (ca. 12,300 cal. yr BP) when the climate became moister. A relatively dry and warm early Holocene climate allowed Pseudotsuga menziesii to migrate northward to this site where it grew with Picea, Tsuga heterophylla and Alnus. The climate became cooler and moister at ca. 8,000 yr BP (ca. 9,200 cal. yr BP), approximately 500–1,000 years prior to sites located south of Two Frog Lake and on the Queen Charlotte Islands, but contemporary with sites on the northern mainland coast of British Columbia and south coastal Alaska. Climate heterogeneity in central coastal British Columbia appears to have occurred on a synoptic scale, suggesting that atmospheric dynamics linked to a variable Aleutian Low pressure system may have had an important influence on early Holocene climate change in the Seymour-Belize Inlet Complex. The transition to cooler and moister conditions facilitated the expansion of Cupressaceae and the establishment of a modern-type coastal temperate rainforest dominated by Cupressaceae and T. heterophylla. This was associated with progressive lake acidification. Diatom changes independent of vegetation change during the late Holocene are correlative with the mid-Neoglacial period, when cooler temperatures altered diatom communities.  相似文献   

4.
东南极拉斯曼丘陵地区莫愁湖(69°22.3’ S,76°22.0’ E)沉积柱中的有机生物标志物记录了全新世中晚期该地区气候演变过程。不饱和长链烯酮在沉积柱111-76 cm (6450-5100 cal. yr. BP)和36-30 cm(3700-3500 cal. yr. BP)深度有检出,76 cm深度以上基本消失,表明该地区在5100 cal. yr. BP前后气候开始由冷转暖,冰川消融,陆壳抬升,相对海平面下降,同时大量的冰融水使湖泊逐渐淡化。沉积柱底部长链烯酮的检出阶段与东南极相对海平面较高时期相一致,而沉积柱36-30 cm(3700-3500 cal. yr. BP)深度不饱和长链烯酮的痕量检出则揭示了一个短暂的气候干冷,湖泊盐度升高的时期。沉积物中正构烷烃反映的当地气候变化所控制的湖生植物群落演变过程与上述过程基本一致。  相似文献   

5.
A multi-proxy analysis of two sediment cores from Rantin Lake are used to reconstruct past lake-level changes and to make inferences about millennial-scale variations in precipitation/evaporation (P/E) balance in the southern Yukon, Canada between 10,900 and 3,100?cal?yr BP. Analyses of calcium carbonate and organic matter concentration, magnetic susceptibility, titanium content, dry bulk density, and macrofossils are used to reconstruct water-level changes. The development of sand layers and deformed sediments at the deep-water core site (i.e. Core A-06) prior to ~10,900?cal?yr BP suggest that lake level was lower at this time. Fine-grained organic sediment deposited from 10,600 to 9,500?cal?yr BP indicates a rise in lake level. The formation of an unconformity at the shallow cores site (Core C-06) and the deposition of shallow-water calcium carbonate-rich facies at the Core A-06 site between ~9,500 and ~8,500?cal?yr BP suggest lower lake levels at this time. Shallow-water facies gradually transition into a sand layer that likely represents shoreline reworking during an extreme lowstand that occurred at ~8,400?cal?yr BP. Following this low water level, fine-grained organic-rich sediment formed by ~8,200?cal?yr BP, suggesting deeper water conditions at core site A-06. Calcium carbonate concentrations are relatively low in sediment deposited from ~6,300 to 3,100?cal?yr BP in Core A-06, indicating that lake level was comparatively higher during the middle and late Holocene. In general, results from this study suggest that the early Holocene was characterized by high P/E from ~10,500 to 9,500?cal?yr BP, low P/E from ~9,500 to 8,400?cal?yr BP, and return to higher P/E from ~8,200 to 3,100?cal?yr BP.  相似文献   

6.
THE 'LITTLE ICE AGE': RE-EVALUATION OF AN EVOLVING CONCEPT   总被引:4,自引:0,他引:4  
ABSTRACT. This review focuses on the development of the ‘Little Ice Age’ as a glaciological and climatic concept, and evaluates its current usefulness in the light of new data on the glacier and climatic variations of the last millennium and of the Holocene. ‘Little Ice Age’ glacierization occurred over about 650 years and can be defined most precisely in the European Alps (c. AD 1300–1950) when extended glaciers were larger than before or since. ‘Little Ice Age’ climate is defined as a shorter time interval of about 330 years (c. AD 1570–1900) when Northern Hemisphere summer temperatures (land areas north of 20°N) fell significantly below the AD 1961–1990 mean. This climatic definition overlaps the times when the Alpine glaciers attained their latest two highstands (AD 1650 and 1850). It is emphasized, however, that ‘Little Ice Age’ glacierization was highly dependent on winter precipitation and that ‘Little Ice Age’ climate was not simply a matter of summer temperatures. Both the glacier‐centred and the climate‐centred concepts necessarily encompass considerable spatial and temporal variability, which are investigated using maps of mean summer temperature variations over the Northern Hemisphere at 30‐year intervals from AD 1571 to 1900. ‘Little Ice Age’‐type events occurred earlier in the Holocene as exemplified by at least seven glacier expansion episodes that have been identified in southern Norway. Such events provide a broader context and renewed relevance for the ‘Little Ice Age’, which may be viewed as a ‘modern analogue’ for the earlier events; and the likelihood that similar events will occur in the future has implications for climatic change in the twenty‐first century. It is concluded that the concept of a ‘Little Ice Age’ will remain useful only by (1) continuing to incorporate the temporal and spatial complexities of glacier and climatic variations as they become better known, and (2) by reflecting improved understanding of the Earth‐atmosphere‐ocean system and its forcing factors through the interaction of palaeoclimatic reconstruction with climate modelling.  相似文献   

7.
As in the past, most Pacific Island people live today along island coasts and subsist largely on foods available both onshore and offshore. On at least two occasions in the 3500 years that Pacific Islands have been settled, sea level changes affected coastal bioproductivity to the extent that island societies were transformed in consequence. Over the past 200 years, sea level has been rising along most Pacific Island coasts causing loss of productive land through direct inundation (flooding), shoreline erosion and groundwater salinization. Responses have been largely uninformed, many unsuccessful. By the year 2100, sea level may be 1.2 m higher than today. Together with other climate‐linked changes and unsustainable human pressures on coastal zones, this will pose huge challenges for livelihoods. There is an urgent need for effective and sustainable adaptation of livelihoods to prepare for future sea level rise in the Pacific Islands region. There are also lessons to be learned from past failures, including the need for adaptive solutions that are environmentally and culturally appropriate, and those which appropriate decision makers are empowered to design and implement. Around the middle of the twenty‐first century, traditional coastal livelihoods are likely to be difficult to sustain, so people in the region will need alternative food production systems. Within the next 20–30 years, it is likely that many coastal settlements will need to be relocated, partly or wholly. There are advantages in anticipating these needs and planning for them sooner rather than later. In many ways, the historical and modern Pacific will end within the next few decades. There will be fundamental irreversible changes in island geography, settlement patterns, subsistence systems, societies and economic development, forced by sea level rise and other factors.  相似文献   

8.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

9.
Airborne lidar data from the northern Puget Lowland provide information on the spatial variability and amplitude of raised postglacial shorelines, marine deltaic features and glaciomarine sediments deposited between approximately c. 12 920 and 11 050 14C yr BP (15 960‐12 364 cal yr BP). Relict shorelines preserved in embayments on Whidbey and Camano islands (between 47°54′N and 48°24′N) are found up to an altitude of c. 90 m and record glacio‐isostatic movements attributed to postglacial rebound. The tilt of the regional minimum highstand sea level surface to the north of 0.80 m km?1, with local variability from 0.25 m km?1 to 0.77 m km?1, is consistent with previous studies (Thorson 1989; Dethier et al. 1995). The local variability is related to the uncertainty in the depth of the water column above these features at the time of deposition and probable tectonic deformation. The information generated by these lidar data is most valuable in posing new research questions, generating alternative research hypotheses to those already formulated in the northern Puget Lowland.  相似文献   

10.
The ostracod record from Kajemarum Oasis in the Sahel zone of Northeastern Nigeria covers the last c. 4000 cal. years of a 5500 cal. year lake-sediment sequence. The first appearance of ostracods, around 4000 cal. yr BP, reflects the switch from a very dilute lake during the mid-Holocene, to slightly oligosaline conditions that favoured the occurrence and preservation of ostracods. Between 3800 and 3100 cal. yr BP, the lake remained permanent and fresh or slightly oligosaline, with a Ca-Mg-HCO3 composition. A rise in salinity c. 3100 cal. yr BP, accompanied by a change to more variable conditions on a seasonal to interannual timescale, led to the influx of more-euryhaline taxa. Oligosaline conditions continued between 3100 and 1500 cal. yr BP. Around 1500 cal. yr BP, there was a sharp rise in salinity, probably accompanied by a shift to Na-CO3-type water, with marked seasonal and interannual variability. Salinity decreased after 900 cal. yr BP, although short-term variations were marked between 900 cal. yr BP and the top of the sequence, 95 cal. yr BP. Changes in the species assemblages and ostracod abundance were a response to climate-driven variations in the seasonal and interannual stability of the lake, together with changes in its salinity and solute composition, but there is no simple relationship between ostracod faunas and salinity. Within Kajemarum, there is no evidence of ostracod assemblages typical of deep, fresh water, nor of hypersaline Na-Cl waters. The sediments associated with the freshest waters at Kajemarum did not favour ostracod preservation, and the driest climatic conditions were associated with oligosaline to mesosaline water of Na-CO3-type. The species-poor assemblages reflect the short-term instability of the lake, coupled with the limited opportunities for the colonisation of this isolated basin.  相似文献   

11.
In the Solway Firth — Morecambe Bay region of Great Britain there is evidence for heightened hillslope instability during the late Holocene (after 3000 cal. BP). Little or no hillslope geomorphic activity has been identified occurring during the early Holocene, but there is abundant evidence for late Holocene hillslope erosion (gullying) and associated alluvial fan and valley floor deposition. Interpretation of the regional radiocarbon chronology available from organic matter buried beneath alluvial fan units suggests much of this geomorphic activity can be attributed to four phases of more extensive gullying identified after 2500–2200, 1300–1000, 1000–800 and 500 cal. BP. Both climate and human impact models can be evoked to explain the crossing of geomorphic thresholds: and palaeoecological data on climatic change (bog surface wetness) and human impact (pollen), together with archaeological and documentary evidence of landscape history, provide a context for addressing the causes of late Holocene geomorphic instability. High magnitude storm events are the primary agent responsible for gully incision, but neither such events nor cooler/wetter climatic episodes appear to have produced gully systems in the region before 3000 cal. BP. Increased gullying after 2500–2200 cal. BP coincides with population expansion during Iron Age and Romano-British times. The widespread and extensive gullying after 1300–1000 cal. BP and after 1000–800 cal. BP coincides with periods of population expansion and a growing rural economy identified during Norse times, 9–10th centuries AD, and during the Medieval Period, 12–13th centuries AD. These periods were separated by a downturn associated with the ‘harrying of the north’ AD 1069 to 1070. The gullying episode after 500 cal. BP also coincides with increased anthropogenic pressure on the uplands, with population growth and agricultural expansion after AD 1500 following 150 years of malaise caused by livestock and human (the Black Death) plagues, poor harvests and conflicts on the Scottish/English border. The increased susceptibility to erosion of gullies is a response to increased anthropogenic pressure on upland hillslopes during the late Holocene, and the role of this pressure appears crucial in priming hillslopes before subsequent major storm events. In particular, the cycles of expansion and contraction in both population and agriculture appear to have affected the susceptibility of the upland landscape to erosion, and the hillslope gullying record in the region, therefore, contributes to understanding of the timing and spatial pattern of human exploitation of the upland landscape.  相似文献   

12.
通过对香港岛水域V10柱样中化石硅藻与重矿物的鉴定分析,结合14C年代数据,探讨了该区全新世环境的演变过程及硅藻组合和重矿物组成对海洋环境变化的响应。结果显示:全新世该水域硅藻始终以沿岸半咸水种占据绝对优势,其次为咸水种,基本不见淡水种;重矿物中自生黄铁矿和菱铁矿占有相当大的比例,共同反映该区自全新世以来为近岸低盐的海洋环境,沉积界面以强还原条件为主。受全球及区域气候变化影响,该区全新世气候与环境变化呈现出阶段性和复杂性:其中,约11 650―10 650 cal. a BP,气候由冰期的寒冷转向温凉,海平面上升;10 650―7 200 cal. a BP,气候温暖但可能较为干燥,海平面的变化仍主要受海侵的影响;7 200―6 000 cal. a BP,气候温暖湿润,夏季风降水大幅增加,海平面继续上升,到6 900 cal. a BP达到最高海平面;6 000 cal. a BP之后,夏季风减弱,海平面回落,气候可能又变为温干。  相似文献   

13.
Antarctic climate changes influence environmental changes at both regional and local scales. Here we report Holocene paleolimnological changes in lake sediment core Sk4C-02 (length 378.0 cm) from Lake Skallen Oike in the Soya Kaigan region of East Antarctica inferred from analyses of sedimentary facies, a range of organic components, isotope ratios of organic carbon and nitrogen, and carbon-14 dating by Tandetron accelerator mass spectrometry. The sediment core was composed of clayish mud (378.0–152.5 cm) overlain by organic sediments (152.5 cm-surface). The age of the surface and the core bottom were 150 (AD1950-1640) and ca. 7,030 ± 73 calibrated years before present (cal BP), respectively, and the mean sedimentation rate was estimated to be 0.55 mm/year. Multi-proxy analyses revealed that the principal environmental change in the core is a transition from marine to lacustrine environments which occurred at a depth of 152.5 cm (ca. 3,590 cal BP). This was caused by relative sea level change brought about by ongoing retreat of glaciers during the mid-Holocene warming of Antarctica, and ongoing isostatic uplift which outpaced changes in global (eustatic) sea level. The mean isostatic uplift rate was calculated to be 2.8 mm/year. The coastal marine period (378.0–152.5 cm, ca. 7,030–3,590 cal BP) was characterized by low biological production with the predominance of diatoms. During the transition period from marine to freshwater conditions (152.5-approximately 135 cm, ca. 3,590–3,290 cal BP) the lake was stratified with marine water overlain by freshwater, with a chemocline and an anoxic (sulfidic) layer in the bottom of the photic zone. Green sulfur bacteria and Cryptophyta were the major photosynthetic organisms. The Cryptophyta appeared to be tolerant of the moderate salinity and stratified water conditions. The lacustrine period (approximately 135 cm-surface, ca. 3,290 cal BP-present) was characterized by high biological production by green algae (e.g. Comarium clepsydra and Oedegonium spp.) with some contributions from cyanobacteria and diatoms. Biological production during this period was 8.7 times higher than during the coastal marine period.  相似文献   

14.
There is considerable debate concerning the effects of the first humans on the environments of the Pacific Islands. Much disagreement has arisen because of the differing techniques used to fix the time when the first humans arrived on particular islands. There is also considerable discussion about how stable, at a variety of timescales, Pacific Island environments were in the absence (or presence) of humans. John Flenley has proposed that archaeological dates significantly underestimate the times of initial human arrival on many Pacific Islands, the most accurate estimates of which come from palynological analyses. This paper offers some support to this view, from consideration of reef‐growth hiatuses in Fiji, yet doubts that initial human arrivals were coincident with ecological crises. There is considerable evidence that natural climate changes, particularly short‐term ones, caused major ecological and environmental disruptions on Pacific Islands, during both their pre‐ and post‐settlement histories, and that human arrival was marked in most cases by only marginal disruptions.  相似文献   

15.
We present a climatic reconstruction of Holocene lacustrine episodes in the Salinas del Bebedero basin (Argentina), based on geological and diatom information.Morphological, sedimentological and diatom evidence between 11600 ± 140 yr BP and 325 ± 95 yr BP, allowed us to interpret the paleoenvironments of the basin. Episodes of high energy (sandy levels) are linked to large inflow of meltwater through the Desaguadero River, related to development of glaciers on the Andes. This inflow is characterized by peaks of relative abundance of the brackish water diatom Cyclotella choctawatcheeana Prasad. The values of C. choctawatcheeana decrease in deposits of low energy (clay levels), where it co-dominates with oligohalobous Fragilaria and Epithemia spp.To the last two peaks of large inflow of meltwater, radiocarbon dates corrected to sidereal ages, are AD 1280/1420 and AD 1443/1656. These ages agree with two cold episodes clearly recorded in dendrological studies from the Patagonian Andes and were correlated to the Little Ice Age. Thus, older Holocene episodes of large inflow of water to the basin were correlated with the Neoglacial Advances defined by Mercer (1976) for the Andes.  相似文献   

16.
Small lakes and wetlands from high elevation within the Sierra Nevada Range (southern Spain) preserve a complete post-glacial Holocene record. Isotopic, TOC and C/N analyses, carried out on a sediment core, show various stages in the evolution of the Borreguiles de la Virgen, which today constitute a small bog at about 2,950?m above sea level. Glacial erosion generated a cirque depression, which became a small lake during the first phase of infilling (from?8,200 to 5,100?cal?yr BP), as suggested by sedimentary evidence, including an atomic C/N ratio generally below 20, low TOC values and the highest ??13C and ??15N values of the record. These results imply significant algal productivity, which is confirmed by the microscopic algal remains. Drier conditions became established progressively in this area from?5,100 to 3,700?cal?yr BP. Subsequently, the lake evolved into a bog as shown by geochemical evidence (C/N ratios above 20, high TOC content and low ??13C values). Unstable conditions prevailed from?3,600 to 700?cal?yr BP; an extremely low sedimentation rate and scarcity of data from this period do not allow us to make a coherent interpretation. Fluctuating conditions were recorded during the last?~700?cal?yr BP, with wetter conditions prevailing during the first part of the interval (with C/N rate below 20) up to 350?years ago. In general, a gradual trend toward more arid conditions occurred since?~6,900?cal?yr BP, with a further increase in aridity since?~5,100?cal?yr BP. This evidence is consistent with other contemporaneous peri-Mediterranean records.  相似文献   

17.
The evolution and current state of landscapes around Lake Teletskoye have not previously been studied in detail. In the valley of the Malye Chily River, which flows into Lake Teletskoye, the timing of dam failure and draining of two moraine-dammed lakes has been identified. Botanical analysis, ash content determination, and radiocarbon dating of two peat profiles provide insight into postglacial evolution of wetlands related to this landscape. We found clear evidence of the disappearance from the peat of higher vascular species that, today, grows mostly in the plains of Siberia. Correlation of the data obtained with the accepted chronology of the Holocene events in the Russian Altai suggests the following stages of postglacial environmental change in the Malye Chily River valley: (1) the continuation of the Late Würm glaciation degradation (before 7000?cal. yr BP); (2) Holocene Climate Optimum (7000–5000?cal. yr BP); (3) Akkem cooling (5000–4200?cal. yr BP); (4) warm period (4200–3700?cal. yr BP); and (5) Historical cooling (3700–1600?cal. yr BP).  相似文献   

18.
Lithostratigrahic and mineralogic analyses of sediments from hypersaline Bainbridge Crater Lake, Galápagos Islands, provide evidence of past El Niño frequency and intensity. Laminated sediments indicate that at least 435 moderate to very strong El Niño events have occurred since 6100 14C yr BP (7130 cal yr BP), and that frequency and intensity of events increased at about 3000 14C yr BP (3100 cal yr BP). El Niño activity was present between 6100 and 4000 14C yr BP (4600 cal yr BP) but infrequent. The Bainbridge record indicates that there has been considerable millennial-scale variability in El Niño since the mid-Holocene.  相似文献   

19.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   

20.
Geografisk Tidsskrift—Danish Journal of Geography 110(2):337–355, 2010

In northern Greenland, the Cape Grinnell beach ridge plain offers a 9,000year multi-proxy record for isostatic recovery, storm history, and the hydrological changes related to precipitation and slope evolution. The chronology of uplifted beach ridges is constrained by ten geological 14C ages on shell and sea mammal bones and eleven upper limiting ages from archaeological sites that span the last 3,000 years. Beach ridges formed under the influence of open water storms with renewed frequency and intensity ca. 3 ka and 1 ka ago. A lack of shell may reflect cooler sea surface temperatures. The presence and absence of ice can be inferred by push-features. Three intervals of heightened precipitation produced extensive fan deltas: (a) after 9 ka BP (b) prior to 4.5 ka BP and (c) during the Little Ice Age (AD 1350–1900). Active solifluction lobes and colluvia cover beach ridge deposits that are between 9 and 7 ka old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号