首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
华北汛期的起讫及其气候学分析   总被引:11,自引:1,他引:10       下载免费PDF全文
基于对汛期的理解和认识, 利用Samel等人设计的半客观统计分析方法、Mann-Kendall突变分析、滑动t检验等方法, 通过分析和研究1957—2006年华北台站的日降水资料, 确定了华北汛期起讫的日期。结果表明:华北汛期始于6月30日, 止于8月18日, 持续期为50d。华北汛期的起讫日期、持续天数以及空汛发生的频次, 具有鲜明的地域特征:冀北山地汛期开始最早, 结束较迟, 持续天数较长, 空汛发生频次最少; 黄土高原汛期开始较迟, 其北部汛期结束最迟, 持续期也最长, 发生空汛的频次也比较多; 黄河下游地区汛期开始比较早, 结束最早, 汛期最短, 发生无大汛的频次较大; 河北平原地区, 汛期开始最迟, 结束较迟, 汛期较长, 发生无大汛的频次最多。与华北汛期开始和结束日相对应的东亚大气环流特征是:当西太平洋西部上空500hPa存在正的位势高度距平, 华北上空存在负的位势高度距平, 同时地面为“东高西低”的异常海平面气压场配置时, 异常偏南风到达30°N, 华北汛期开始; 当华北上空500hPa为较小的位势高度正距平, 日本海为位势高度正距平, 而地面上, 我国大陆和西太平洋之间为“西高东低”的异常海平面气压场配置时, 异常偏北风控制我国东部地区, 华北汛期结束。  相似文献   

2.
基于普洱雨季开始期年际增量变化规律和影响雨季开始期的环流形势及物理过程,采用年际增量方法和多元线性回归分析方法,选取5个具有物理意义的预测因子(包括前期1月南半球绕极环流、前期2月南太平洋高压、前期4月孟加拉湾至南海海平面气压、前期冬季加拿大北部海冰和前期冬季伊朗高原积雪深度),建立了普洱雨季开始期的预测模型,并对预测模型进行1967—2017年的交叉检验和1998—2017年的逐年独立样本检验。交叉检验中,雨季开始期预测值和观测值年际增量的相关系数为0.84,相对均方根误差为24%;独立样本检验中,雨季开始期年际增量的相对均方根误差为15%,模型对雨季开始期异常年份的预测误差小于7 d,表明该预测模型能很好再现1967—2017年雨季开始期的变化趋势。  相似文献   

3.
汛期我国主要雨季进程成因及预测应用进展   总被引:1,自引:0,他引:1       下载免费PDF全文
汛期内我国中东部地区的雨季是东亚夏季风推进过程中的重要产物,主要包括华南前汛期、梅雨、华北雨季和华西秋雨等,各地雨季决定了我国中东部地区汛期的旱涝布局和旱涝演变,是我国汛期预测和服务的重点。该文回顾了4个雨季特征及影响因子方面的研究进展,在此基础上梳理物理概念预测模型。研究显示:海温异常是影响各区域雨季的重要先兆信号,但不同雨季的年际和年代际变化特征不同,海温作为外强迫信号的影响程度和时空形式也有差异。利用热带太平洋东西海温差指标能更好地解释华南前汛期降水的年际变化。而与梅雨的年际变化分量相关联的海温关键区主要分布于热带,与年代际或多年代际变化分量相联系的海温关键区则来自中高纬度。华北雨季降水的强弱不仅与ENSO循环的位相有关,更多受到ENSO演变速率的影响。而影响华西秋雨的海温关键区随着年代际背景的变化发生了改变,需要重新诊断和建模。  相似文献   

4.
Summary The influence of ENSO on intraseasonal variability over the Tanzanian coast during the short (OND) and long (MAM) rainy seasons is examined. In particular, variability in the rainfall onset, peak and end dates as well as dry spells are considered. In general, El Niño appears to be associated with above average rainfall while La Niña is associated with below average rainfall over the northern Tanzanian coast during OND, and to lesser extent MAM. Over the southern coast, the ENSO impacts are less coherent and this region appears to be a transition zone between the opposite signed impacts over equatorial East and southern Africa. The increased north coast rainfall during El Niño years is generally due to a longer than normal rainfall season associated with early onset while reduced rainfall during La Niña years tends to be associated with a late onset, and thus a shorter than average rainfall season. Wet conditions during El Niño years were associated with enhanced convection and low-level easterly anomalies over the equatorial western Indian Ocean implying enhanced advection of moisture from the Indian Ocean while the reverse is true for La Niña years. Hovmöller plots for OLR and zonal wind at 850 hPa and 200 hPa show eastward, westward propagating and stationary features over the Indian Ocean. It was observed that the propagating features were absent during strong El Niño years. Based on the Hovmöller results, it is observed that the convective oscillations over the Tanzanian coast have some of the characteristic features of intraseasonal oscillations occurring elsewhere in the tropics.  相似文献   

5.
Ethiopian decadal climate variability is characterized by application of singular value decomposition to gridded rainfall data over the period 1901–2007. Two distinct modes are revealed with different annual cycles and opposing responses to regional and global forcing. The northern zone that impacts the Nile River and underlies the tropical easterly jet has a unimodal rainy season that is enhanced by Atlantic Multidecadal Oscillation warm phase. This rainfall mode is linked with the Atlantic zonal overturning circulation and exhibits 10–12-year cycles through much of the twentieth century. The southern zone has a bimodal rainy season that is enhanced by Pacific Decadal Oscillation cool phase and the southern meridional overturning circulation. Multiyear wet and dry spells are characterized by sympathetic responses in the near-equatorial trough extending from Central America across the African Sahel to Southeast Asia. The interaction of Walker and Hadley cells over Africa appears to be a key feature that modulates Ethiopian climate at decadal frequency through anomalous north–south displacement of the near-equatorial trough.  相似文献   

6.
Summary ?Thirty years (1958–1987) of daily rainfall data for Kenya and north eastern Tanzania are analysed with the aim to characterize the interannual variability of the onset and cessation of the East African “long rains” (boreal spring). The leading principal component (PC1) depicts consistent rainfall variations over much of the region. Cumulative PC1 scores for each year serve to identify onset and cessation dates. The robustness of the dates derived from this method is demonstrated through the use of an independent sample of stations. Their spatial representativity is assessed by daily rainfall composites. Average onset occurs on March 25th, and cessation on May 21st. The interannual variability of the onset (standard deviation of 14.5 days) is larger than that of the withdrawal (10.3 days), but the onset is also spatially much more consistent. Mean dates and dates in selected anomalous years agree well with previous studies. The relationship between onset time-series and large-scale atmospheric and oceanic fields is analysed. On a monthly time-scale, interannual variations in “long rains” onset are associated with sea-surface temperature (SST) and sea-level pressure (SLP) patterns that have a different sign for the Atlantic and Indian Oceans. A warm South Atlantic and a cool Indian Ocean are associated with low and high SLP anomalies, respectively. These patterns are conducive to enhanced equatorial easterlies and surface divergence over East Africa. This maintains the meridional branch (north–south orientated) of the Intertropical Convergence Zone (ITCZ) further west, and the net result is a delayed onset of the “long rains”. Some of the South Atlantic features are already present during January–February, suggesting some potential for monitoring interannual variations in the wet season onset, based on SST and SLP patterns. Additional signals are found over Europe and the Mediterranean Sea in terms of the interaction between the Northern Hemisphere extratropics and equatorial eastern Africa. A surge in the mid-tropospheric northerlies at this time induces instability that may lead to an early onset event. Received July 3, 2002; revised November 28, 2002; accepted December 7, 2002 Published online March 17, 2003  相似文献   

7.
Summary An important pattern of interannual variability in the southern African region is one where sea surface temperature (SST) in neighbouring waters, particularly in the Agulhas Current, its retroflection region and outflow across the southern midlatitudes of the Indian Ocean, is anomalously warm or cool. Evidence exists of significant rainfall anomalies over large parts of southern Africa during these warm or cool SST events. Here, a general circulation model is used to study the response of the atmosphere in the region to an idealised representation of these SST anomalies. The induced atmospheric circulation and precipitation anomalies over the adjacent southern African landmass on intraseasonal through to interannual time scales are investigated.A nonlinear response to the SST anomalies is found in that the changes to the model atmosphere when warm SST forcing is used are not the reverse (in either pattern or magnitude) to that when cold SST forcing is imposed. For the warm SST anomaly, it is found that the atmospheric response is favourable for enhancement of the original SST anomaly on scales up to, and including, annual. However, as the scale becomes interannual (i.e., 15–21 months after imposition of the anomaly), the model response suggests that damping of the original SST anomaly becomes likely. However, no such coherent timescale dependent response is found when the cold SST anomaly is impose. It is suggested that the relationship of the SST anomaly to the background seasonal climatology may help explain this fundamental difference in the response.Examination of the circulation and rainfall patterns under warm SST forcing indicates that there are significant anomalies over large parts of southern Africa on all scales from intraseasonal through to interannual. On the south coast, rainfall anomalies result from enhanced evaporation of moisture off the SST anomaly. Over the interior, changer in the convergence of moist air streams together with suggestions of a shift in the Walker circulations between southern Africa and the bordering tropical South Atlantic and Indian Oceans appear to be associated with the rainfall anomalies. Similar mechanisms of rainfall perturbation are found when the cold SST anomaly is imposed; however, there is a significant response only on intra-annual to interannual scales. In all cases, the magnitude of the rainfall anomalies accumulated over a 90 day season were of the order of 90–180 mm, and therefore represent a significant fraction of the annual total of many areas. These model results re-inforce previous observational work suggesting that SST anomalies south of Africa, particularly in the retroflection region of the Agulhas Current, are linked with significant rainfall anomalies over the adjacent subcontinent.With 12 Figures  相似文献   

8.
Summary A general circulation model is used to study the response of the atmosphere to an idealised sea surface temperature (SST) anomaly pattern (warm throughout the southern midlatitudes, cool in the tropics) in the South Indian Ocean region. The anomaly imposed on monthly SST climatology captures the essence of patterns observed in the South Indian Ocean during both ENSO events and multidecadal epochs, and facilitates diagnosis of the model response. A previous study with this anomaly imposed in the model examined differences in the response between that on the seasonal scale (favours enhancement of the original SST anomaly) and that on the decadal scale (favours damping of the anomaly). The current study extends that work firstly by comparing the response on the intraseasonal, seasonal and interannual scales, and secondly, by assessing the changes in the circulation and rainfall over the adjoining African landmass.It is found that the atmospheric response is favourable for enhancement of the original SST anomaly on scales up to, and including, annual. However, as the scale becomes interannual (i.e., 15–21 months after imposition of the anomaly), the model response suggests that damping of the original SST anomaly becomes likely. Compared to the shorter scale response, the perturbation pressure and wind distribution on the interannual scale is shifted poleward, and is more reminiscent of the decadal response. Winds are now stronger over the warm anomaly in the southern midlatitudes suggesting enhanced surface fluxes, upper ocean mixing, and consequently, a damping of the anomaly.Examination of the circulation and rainfall patterns indicates that there are significant anomalies over large parts of southern Africa during the spring, summer and autumn seasons for both short (intraseasonal to interannual) and decadal scales. It appears that rainfall anomalies are associated with changes in the advection of moist tropical air from the Indian Ocean and its related convergence over southern Africa. Over eastern equatorial Africa, the austral autumn season (the main wet season) showed rainfall increases on all time scales, while parts of central to eastern subtropical southern Africa were dry. The signals during summer were more varied. Spring showed generally dry conditions over the eastern half of southern Africa on both short and decadal time scales, with wet areas confined to the west. In all cases, the magnitude of the rainfall anomalies accumulated over a 90 day season were of the order of 90–180 mm, and therefore represent a significant fraction of the annual total of many areas. It appears that relatively modest SST anomalies in the South Indian Ocean can lead to sizeable rainfall anomalies in the model. Although precipitation in general circulation models tends to be less accurately simulated than many other variables, the model results, together with previous observational work, emphasize the need for ongoing monitoring of SST in this region.With 14 Figures  相似文献   

9.
利用1961—2017年中国地面观测站日降水资料、全球大气多要素和海表温度月资料,分析华南区域持续性强降水过程的气候特征,诊断并比较与华南前汛期、后汛期区域持续性强降水年际变化相关的大气环流和海表温度异常特征。结果表明,3—12月华南都可能出现持续性强降水过程,其中汛期4—9月的占了94.4%。伴随着区域持续性强降水的年际变化,华南本地垂直上升运动显著异常是前汛期和后汛期的共同点,但前汛期、后汛期在华南及周边环流异常、水汽输送来源以及海温异常分布等方面都存在一定差异。在前汛期华南区域持续性强降水偏重年,赤道西太平洋区域海温偏低,由于大气罗斯贝波响应使西太平洋副热带高压偏强,热带西太平洋向华南区域水汽输送加强,从而有利于区域持续性强降水偏重。后汛期华南区域持续性强降水偏重年的海温异常分布是赤道中东太平洋区域正异常、东印度洋至西太平洋暖池区负异常,海温异常通过西北太平洋副热带高压、南海热带季风强度、水汽输送和垂直环流等多方面,导致后汛期区域持续性强降水偏重。   相似文献   

10.
Winter-spring precipitation in southern China tends to be higher (lower) than normal in El Niño (La Niña) years during 1953–1973. The relationship between the southern China winter-spring precipitation and El Niño-Southern Oscillation (ENSO) is weakened during 1974–1994. During 1953–1973, above-normal southern China rainfall corresponds to warmer sea surface temperature (SST) in the equatorial central Pacific. There are two anomalous vertical circulations with ascent over the equatorial central Pacific and ascent over southern China and a common branch of descent over the western North Pacific that is accompanied by an anomalous lower-level anticyclone. During 1974–1994, above-normal southern China rainfall corresponds to warmer SST in eastern South Indian Ocean and cooler SST in western South Indian Ocean. Two anomalous vertical circulations act to link southern China rainfall and eastern South Indian Ocean SST anomalies, with ascent over eastern South Indian Ocean and southern China and a common branch of descent over the western North Pacific. Present analysis shows that South Indian Ocean SST anomalies can contribute to southern China winter-spring precipitation variability independently. The observed change in the relationship between southern China winter-spring rainfall and ENSO is likely related to the increased SST variability in eastern South Indian Ocean and the modulation of the Pacific decadal oscillation.  相似文献   

11.
Located at the southern boundary of the tropical rainfall belt within the South Africa monsoon regime, Rodrigues Island, ~2500 km east of East Africa, is ideally located to investigate climatic changes over the southwest Indian Ocean(SWIO). In this study, we investigate the climatic controls of its modern interannual rainfall variability in terms of teleconnection and local effects. We find that increased rainfall over the SWIO tends to occur in association with anomalously warm(cold) SSTs over the equatorial central Pacific(Maritime Continent), resembling the central Pacific El Ni?o, closely linked with the Victoria mode in the North Pacific. Our analyses show that the low-level convergence induced by warm SST over the equatorial central Pacific leads to anomalous low-level divergence over the Maritime Continent and convergence over a large area surrounding the Rodrigues Island, which leads to increased rainfall over the SWIO during the rainy season. Meanwhile, the excited Rossby wave along the tropical Indian Ocean transports more water vapor from the tropical convergence zone into the SWIO via intensified northwest wind. Furthermore, positive feedback induced by the Rossby wave response to the increased rainfall in the region contributes to the large interannual variations over the SWIO.  相似文献   

12.
A. M. Grimm 《Climate Dynamics》2004,22(2-3):123-138
The rainy season in most of Brazil is associated with the summer monsoon regime in South America. The quality of this season is important because it rains little during the rest of the year over most of the country. In this study, the influence of La Niña events on the summer monsoon circulation, rainfall and temperature is analyzed with seasonal and monthly resolution, using data from a dense network of stations, giving a comprehensive view of the impact of these events. The expected precipitation percentiles during the monsoon season of La Niña events are calculated, as well as anomalies of surface temperature and thermodynamic parameters. This information is analyzed jointly with anomaly composites of several circulation parameters. The analysis shows that some anomalies, which are consistent and important during part of the season, are smoothed out in a seasonal analysis. There are abrupt changes of anomalies within the summer monsoon season, suggesting the prevalence of regional processes over remote influences during part of the season. In spring there are positive precipitation anomalies in north and central-east Brazil and negative ones in south Brazil. These precipitation anomalies are favored by the perturbation in the Walker and Hadley circulation over the eastern Pacific and South America, and by perturbations in the rotational circulation over southern South America. Northerly moisture inflow from the Atlantic into northern South America is emphasized and diverted towards the mouth of the Amazon by the low-level cyclonic anomaly north of the equator. In December and January, probably triggered by anomalous surface cooling during the spring, there is an anomalous low-level divergence and an anticyclonic anomaly over southeast Brazil. This anomalous circulation directs moisture flux towards south Brazil, causing moisture convergence in part of this region and part of central-west Brazil. The thermodynamic structure in central-east Brazil does not favor precipitation over this region, and the wet anomalies in north Brazil are displaced northward. The dry anomalies in south Brazil almost disappear and even turn positive. In February, after the strongly below normal precipitation of January, the surface temperature anomalies turn positive over southeast Brazil. The low-level anticyclonic anomaly is much weaker than in January. There are positive rainfall anomalies in north Brazil and in the South Atlantic Convergence Zone, and negative ones return to south Brazil.  相似文献   

13.
In this study, we assess the prediction for May rainfall over southern China(SC) by using the NCEP CFSv2 outputs. Results show that the CFSv2 is able to depict the climatology of May rainfall and associated circulations.However, the model has a poor skill in predicting interannual variation due to its poor performance in capturing related anomalous circulations. In observation, the above-normal SC rainfall is associated with two anomalous anticyclones over the western tropical Pacific and northe...  相似文献   

14.
用1959~1998共40年全球格点风场资料计算了200 hPa与850 hPa的纬向风速差, 即对流层纬向风切变(简称TZWS),并在此基础上得到其距平值。为了全面考察对流层中环流异常的年际变率特征, 根据TZWS的标准差分布, 文中选出了7个TZWS标准差数值大于5 m/s的代表性区域。这7个区域分别位于赤道中太平洋、赤道东太平洋、北太平洋亚热带地区、南太平洋亚热带地区、赤道大西洋、亚洲西南部以及东北部。前5个分别位于赤道、亚热带太平洋和大西洋的区域TZWS指数, 其年际变率与ENSO循环有密切联系, 反映了热带海洋温度异常对低纬度地区对流层环流的影响; 后2个区域的TZWS指数反映的是亚洲西南部和东北部的气候统变率, 在年际时间尺度上与ENSO循环有着明显的区别。通过对全球陆地降水和温度场的分析, 比较了热带、副热带的TZWS指数以及北极涛动指数的异同, 发现后2个区域TZWS指数能很好且能独立反映出北半球中高纬度地区陆地降水及陆地温度的异常模态。  相似文献   

15.
Huang  Ruping  Chen  Shangfeng  Chen  Wen  Yu  Bin  Hu  Peng  Ying  Jun  Wu  Qiaoyan 《Climate Dynamics》2021,56(11):3643-3664

Compared to the zonal-mean Hadley cell (HC), our knowledge of the characteristics, influence factors and associated climate anomalies of the regional HC remains quite limited. Here, we examine interannual variability of the northern poleward HC edge over western Pacific (WPHCE) during boreal winter. Results suggest that interannual variability of the WPHCE is impacted by the El Niño-Southern Oscillation (ENSO) Modoki, North Pacific Oscillation (NPO) and North Atlantic Oscillation (NAO). The WPHCE tends to shift poleward during negative phase of the ENSO Modoki, and positive phases of the NPO and NAO, which highlights not merely the tropical forcing but also the extratropical signals that modulate the WPHCE. ENSO modoki, NPO and NAO modulate the WPHCE via inducing atmospheric anomalies over the western North Pacific. We further investigate the climatic impacts of the WPHCE on East Asia. The poleward shift of the northern descending branch of the WPHC results in anomalous upward (downward) motions and upper-level divergence (convergence) anomalies over south-central China (northern East-Asia), leading to increased (decreased) rainfall there. Moreover, pronounced cold surface air temperature anomalies appear over south-central China when the sinking branch of the WPHC moves poleward. Based on the temperature diagnostic analysis, negative surface temperature tendency anomalies over central China are mostly attributable to the cold zonal temperature advection and ascent-induced adiabatic cooling, while the negative anomalies over South China are largely due to the cold meridional temperature advection. These findings could improve our knowledge of the WPHCE variability and enrich the knowledge of forcing factors for East Asian winter climate.

  相似文献   

16.
利用NCEP/NCAR全球再分析资料、地面观测资料和自动站降水资料,分析了2018/2019年冬季浙江罕见连续阴雨寡照天气过程中冬季风环流和南支槽等环流异常,并从西风带波动、海温强迫等方面研究了局地环流异常的成因。结果表明:2018/2019年冬季连阴雨事件中雨日、日照破历史记录,雨量较常年同期明显偏多。主要的环流异常为西北太平洋异常反气旋(WNPAC)明显偏北,同时阿留申低压和西伯利亚高压亦偏北,东亚地区40°N以南有强的偏南风异常,冬季风偏弱;南支槽较常年偏强,保证了浙江上空有持续的水汽和扰动输送。对流层中层存在沿欧洲向东亚—西太平洋传播的波动能量,波能在东亚地区一直向南传播至20°N以南,可能导致WNPAC明显北抬和南支槽加强。ENSO是WNPAC的重要强迫源,ENSO暖位相使得海洋性大陆出现异常对流冷却,而浙江上空对流加强,ENSO对南支槽活动强度亦有明显的制约作用。中国近海海温偏高是WNPAC和阿留申低压明显偏北的重要影响因素。2018/2019年冬季局地环流异常可能由ENSO和中国近海海温协同强迫所致。  相似文献   

17.
The interannual variation of precipitation in the southern part of Iran and its link with the large-scale climate modes are examined using monthly data from 183 meteorological stations during 1974–2005. The majority of precipitation occurs during the rainy season from October to May. The interannual variation in fall and early winter during the first part of the rainy season shows apparently a significant positive correlation with the Indian Ocean Dipole (IOD) and El Ni?o-Southern Oscillation (ENSO). However, a partial correlation analysis used to extract the respective influence of IOD and ENSO shows a significant positive correlation only with the IOD and not with ENSO. The southeasterly moisture flux anomaly over the Arabian Sea turns anti-cyclonically and transport more moisture to the southern part of Iran from the Arabian Sea, the Red Sea, and the Persian Gulf during the positive IOD. On the other hand, the moisture flux has northerly anomaly over Iran during the negative IOD, which results in reduced moisture supply from the south. During the latter part of the rainy season in late winter and spring, the interannual variation of precipitation is more strongly influenced by modes of variability over the Mediterranean Sea. The induced large-scale atmospheric circulation anomaly controls moisture supply from the Red Sea and the Persian Gulf.  相似文献   

18.
用偏最小二乘(Partial Least Square,PLS)回归方法分析了 1979~2018年影响亚马逊旱季(6~8月)降水年际变率的热带海面温度模态.第一海面温度模态解释了总方差的64%,主要表现为前期亚马逊雨季(12月至次年2月)至旱季(6~8月)热带东太平洋La Ni?a型海面温度异常演变.12月至次年2月...  相似文献   

19.
The interannual variability of upper ocean heat content (OHC) in the South China Sea (SCS) for the period of 1987–2006 and its response to ENSO events are investigated. It is found that the variability has a good correspondence with ENSO events, but with opposite phase. Negative OHC anomalies appear during ENSO warm phases, while positive OHC anomalies occur during ENSO cool phases. In addition, negative (positive) OHC anomalies propagate westward obviously during ENSO warm (cool) phases in the northern SCS. In contrast, OHC anomalies in the southern SCS do not exhibit distinct westward propagation during ENSO events. To explore why the OHC anomalies cannot propagate westward in the southern SCS, the interannual variability of oceanic and atmospheric anomaly fields including wind stress curl (WSC), horizontal wind stress, latent heat flux (LHF) and sea level pressure (SLP) is investigated. The results show that after a mature phase of ENSO warm (cool) event, negative (positive) OHC anomalies first appear in the northern SCS, which comes from the western Pacific through Luzon Strait. Then cyclonic (anticyclonic) wind stress anomalies occur in the northern SCS, which leads to positive (negative) WSC anomalies. Meanwhile, positive (negative) LHF anomalies which correspond to oceanic heat loss (gain) occur in this region. The effects of WSC and LHF, combined with the westward propagating negative (positive) OHC anomalies from the western Pacific, may contribute to rapid growth and propagation of the OHC anomalies in the northern SCS. On the contrary, the negative (positive) WSC and LHF anomalies associated with positive (negative) SLP in the southern SCS seem to be the important processes responsible for the weakening and non-propagation of the OHC anomalies in the southern SCS after a mature phase of ENSO warm (cool) event.  相似文献   

20.
This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. A major model bias is the eastward displacement of the western North Pacific inter-tropical convergence zone (ITCZ), near the dateline, during northern summer. This introduces a strong semiannual component in Pacific Walker circulation indices and central equatorial Pacific sea surface temperatures. Another weakness of the coupled model is a less-than-adequate simulation of the Southern Oscillation due to an erroneous eastward extension of the Southern Pacific convergence zone (SPCZ) year round. Despite these problems, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Niño34 time series shows enhanced power in the 2–4 year band, as compared to the 2–8 year range for observations during the 1950–2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Niño34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These features are mainly due to the unrealistic interannual variability simulated by the model in the western North Pacific. The amplitude and even the sign of the simulated surface and upper level wind anomalies in these areas are not consistent with observed patterns during weak/strong ISM years. The ISM and western North Pacific ITCZ fluctuate independently in the observations, while they are negatively and significantly correlated in the simulation. This isolates the Pacific Walker circulation from the ISM forcing. These systematic errors may also contribute to the reduced amplitude of ENSO variability in the coupled simulation. Most of the unrealistic features in simulating the Indo-Pacific interannual variability may be traced back to systematic errors in the base state of the coupled model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号