首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comets     
Summary In Part II of this paper we comment on the modelling of the complex interactions which take place in cometary comae and tails between parent molecules, radicals, ions, dust grains and the solar electromagnetic and corpuscular radiation (Sect. 4), and we summarize some of the current thoughts about the nature of the elusive cometary nucleus (Sect. 5). Comets are ephemeral phenomena whose lifetimes are short on the cosmic scale; their evolution, statistically and as individual objects, is a main theme in contemporary research (Sect. 6). Although their origins are still not well known, comets undoubtedly carry important clues to the early history and evolution of the solar system (Sect. 7). Finally, we mention the main questions now being asked by cometary studies and illustrate some of the future observational possibilities which may provide crucial data for the next steps forward (Sect. 8).  相似文献   

2.
Since the initial discovery of cometary charge exchange emission, more than 20 comets have been observed with a variety of X‐ray and UV observatories. This observational sample offers a broad variety of comets, solar wind environments and observational conditions. It clearly demonstrates that solar wind charge exchange emission provides a wealth of diagnostics, which are visible as spatial, temporal, and spectral emission features. We review the possibilities and limitations of each of those in this contribution (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We give an overview of the main results of our works on the revision of cometary light curves and on the search for new patterns and features in the evolution of the integrated brightness of comets as they move in circumsolar space. These works revealed several new, previously unknown phenomena in the integrated-brightness variations and outburst activity of comets. Our results supplement and expand the body of observational data that provides a basis for constructing a model of the cometary nucleus and developing a theory of the cometary evolution.  相似文献   

4.
We systematically investigate the encounters between the Sun and neighbouring stars and their effects on cometary orbits in the Oort cloud, including the intrinsic one with the star Gl 710 (HIP 89 825), with some implications to stellar and cometary dynamics. Our approach is principally based on the combination of a Keplerian‐rectilinear model of stellar passages and the Hipparcos Catalogue (ESA 1997). Beyond the parameters of encounter, we pay particular attention to the observational errors in parallaxes and stellar velocities, and their propagation in time. Moreover, as a special case of this problem, we consider the collision probability of a star passing very closely to the Sun, taking also into account the mutual gravitational attraction between the stars. In the part dealing with the influence of stellar encounters on the orbital elements of Oort cloud comets, we derive new simple formulae calculating the changes in the cometary orbital elements, expressed as functions of the Jeans impulse formula. These expressions are then applied to calculate numerical values of the element changes caused by close encounters of neighbouring stars with some model comets in the Oort cloud. Moreover, the general condition for an ejection of comets from the cloud effected by a single encounter is derived and discussed.  相似文献   

5.
A fundamental question in cometary science is whether the different dynamical classes of comets have different chemical compositions, which would reflect different initial conditions. From the ground or Earth orbit, radio and infrared spectroscopic observations of a now significant sample of comets indeed reveal deep differences in the relative abundances of cometary ices. However, no obvious correlation with dynamical classes is found. Further results come, or are expected, from space exploration. Such investigations, by nature limited to a small number of objects, are unfortunately focussed on short-period comets (mainly Jupiter-family). But these in situ studies provide “ground truth” for remote sensing. We discuss the chemical differences in comets from our database of spectroscopic radio observations, which has been recently enriched by several Jupiter-family and Halley-type comets.  相似文献   

6.
Abstract— Recent developments in our understanding of comets provide insights into the topic of cometary meteorites. These developments include the identification of comet-asteroid transition objects (such as 4015 Wilson-Harrington and 3200 Phaethon), information on the composition of cometary solids, and new ideas on the collisional history of Jupiter-family comets. In this work, we revisit this question, and we conclude that comets do indeed yield macroscopic meteorites, which either have not been found or have not been recognized. We also consider the expected characteristics of cometary meteorites, with an emphasis on those that may help identify and differentiate them from other types of meteorites. If cometary meteorites have preserved the main characteristics of cometary dust, the mineralogy would be dominated by highly unequilibrated anhydrous silicates, and the chemistry would be nearly chondritic but with a high abundance of C and N. On the other hand, if an unknown process produced extensive aqueous alteration in the material that formed cometary meteorites, they would resemble (or could even be) CI carbonaceous chondrites. We do not expect cometary meteorites to have chondrules. So far, no single meteorite looks unequivocally cometary. However, we have identified xenoliths in ordinary chondrite regolith breccias that meet most of our criteria for a cometary origin and deserve further study.  相似文献   

7.
The icy conglomerate model introduced by Whipple more than 40 years ago has been widely accepted in cometary science because it is able to describe numerous cometary phenomena. In this model comets are described as a conglomerate of ices and dust where the ices represent the major component. However, some recent observations seem to favour dust rich comets. The purpose of this paper is to summarize the observational facts supporting the dominance of refractories in comets and to discuss the consequences of a dust dominated nucleus for cometary physics.  相似文献   

8.
The icy conglomerate model introduced by Whipple more than 40 years ago has been widely accepted in cometary science because it is able to describe numerous cometary phenomena. In this model comets are described as a conglomerate of ices and dust where the ices represent the major component. However, some recent observations seem to favour dust rich comets. The purpose of this paper is to summarize the observational facts supporting the dominance of refractories in comets and to discuss the consequences of a dust dominated nucleus for cometary physics.  相似文献   

9.
The majority of new ground-based discoveries of comets comes from large surveys devoted, predominantly, to Near Earth Asteroids. The first step in distinguishing these newly discovered members of the population of cometary bodies consists inconfirmatory astrometric observations along with detection of their cometaryfeatures. Although both amateur and professional stations take part in suchconfirmatory observations, only some of them do a preliminary analysis of thecometary activity of a particular newly discovered body. A timely recognitionof cometary features of a particular body having an unusual orbit can help inplanning further observing campaigns.A main goals of the Klet Observatory NEO astrometric follow-upprogramme consists of an analysis of possible cometary activity of newlydiscovered unusual bodies. Here, we describe several examples (comets C/1999 S4 (LINEAR) and so on). We also mention an extension of our programme to fainterobjects after the completion ofa new 1-m telescope at the Klet Observatory.  相似文献   

10.
The possibility of impacts and their results in relation to the cometary outbursts between comets and other small bodies in the solar system has been investigated. Taking into consideration certain physical features of cometary nuclei and impacting bodies, the probability of impacts of small bodies moving in the main asteroid belt with hypothetical comets which represent three types: Jupiter family comets, Halley family comets and long period comets has been computed. The probability of impacts between comets and meteoroids at large heliocentric distances has also been estimated. Potential consequences of these events in relation to outbursts of the cometary brightness have been discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
12.
Our current understanding of split, Jupiter-family comets is reviewed. The focus is on what recent studies of comets have told us about the nature of the splitting phenomenon. The goal is to not repeat the information given in recent reviews of split comets, but to build upon it. In particular, we discuss comets that have suffered splitting or fragmentation events in the past few years. These include comets (a) 57P/du Toit-Neujmin-Delporte, observed with a long train of fragments in 2002; (b) 73P/Schwassmann-Wachmann 3, which split in 1995 and was extensively studied during its relatively close passage to Earth in 2006, during which dozens of fragments were discovered and studied; and (c) 174P/Echeclus, a Centaur and potentially future JFC, which split in late 2005 and was the first such Centaur observed to do so. We also discuss recent observations by SOHO of split comets that are likely of short-period. The Spitzer Space Telescope has observed many JFCs and provided us with unprecedented detailed views of cometary debris trails, which may be thought of as a middle ground between “normal” ejection of micron-sized dust grains and the cleaving off of meter-to-kilometer sized fragments. We will also discuss potential breakthroughs in studying splitting JFCs that may come from future surveys.  相似文献   

13.
Studies of the D:H ratio in H2O within the Solar nebula provide a relationship between the degree of enrichment of deuterium and the distance from the young Sun. In the context of cometary formation, such models suggest that comets which formed in different regions of the Solar nebula should have measurably different D:H ratios. We aim to illustrate how the observed comets can give information about the formation regions of the reservoirs in which they originated. After a discussion of the current understanding of the regions in which comets formed, simple models of plausible formation regions for two different cometary reservoirs (the Edgeworth–Kuiper belt and the Oort Cloud) are convolved with a deuterium-enrichment profile for the pre-solar nebula. This allows us to illustrate how different formation regions for these objects can lead to great variations in the deuterium enrichment distributions that we would observe in comets today. We also provide an illustrative example of how variations in the population within a source region can modify the resulting observational profile. The convolution of a deuterium-enrichment profile with examples of proto-cometary populations gives a feel for how observations could be used to draw conclusions on the formation region of comets which are currently fed into the inner Solar system from at least two reservoirs. Such observations have, to date, been carried out on only three comets, but future work with instruments such as ALMA and Herschel should vastly improve the dataset, leading to a clearer consensus on the formation of the Oort cloud and Edgeworth–Kuiper belt.  相似文献   

14.
Andrew F. Cheng 《Icarus》2006,184(2):584-588
Three Jupiter family comets have now been observed by spacecraft with the surprising result that these comets lack unambiguous impact craters. Large-scale topography generally appears to be softened on these comets, although sharp topography is preserved at small scales. We find that viscous relaxation of water ice may explain these observations, given reasonable assumptions about ice grain size and temperatures attained in the interiors. We suggest that both the shapes and the cratering records of Jupiter family comets may be substantially modified and no longer reflect cometary formation processes or collisional evolution in the Kuiper Belt.  相似文献   

15.
Abstract— Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple's (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy‐conglomerate planetesimals, possibly held together only by self‐gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker‐Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA's Rosetta mission, now en route to comet 67P/Churyumov‐Gerasimenko, will provide that opportunity.  相似文献   

16.
Monte Carlo simulations can either be viewed as a numerical method for solving evolutionary equations or as a way for statistically modelling the outcome of chaotic dynamical systems. Thus they are well suited for treating many aspects of cometary dynamics. We present a critical review of past applications of Monte Carlo simulations for both long- and short-period comets indicating the strength and weaknesses of the methods with suggestions for future applications.  相似文献   

17.
The chemistry of both nitrogen and sulfur presents interesting problems in comets.In this paper, we use a model of cometary comae with gas-phase chemical kineticsand gas dynamics to predict molecular abundances in the inner coma region for twoof the brightest comets in the past 20 years, Hyakutake (C/1996 B2) and Hale–Bopp(C/1995 O1). In this progress report we concentrate on the gas-phase chemistry of thenitrogen sulfide (NS) radical at a heliocentric distance of 1 AU to study the abundanceof NS using a detailed photo and chemical reaction network with over 100 species andabout 1000 reactions. The results are compared with recent observations of CometHale–Bopp and reveal that conventional gas-phase reactions schemes do not produceNS in sufficient quantities to explain the observations. We plan to continue therefinement of the model to improve agreement with observational constraints.  相似文献   

18.
《Planetary and Space Science》1999,47(6-7):773-779
The recent passage of the Hale–Bopp (C/1995 O1) comet has provided the first opportunity to analyse the infrared spectral properties of a bright comet both from the ground and by the ISO space observatory. Previous works have already been dedicated to study the potential candidates to reproduce the cometary feature at 10 μm observed for different comets. We have applied a similar approach to compare the Hale–Bopp (C/1995 O1) spectra with laboratory data. The best fit has been obtained by using a mixture of crystalline Mg-rich olivine (forsterite), amorphous olivine and amorphous carbon grains. Some constraints on the possible cometary grain types derive from our simulation. Aggregates of submicron particles, composed of amorphous and crystalline olivine and amorphous carbon materials seem to be compatible with the cometary emission. Moreover, the possibility of fitting observational data on a wide IR spectra range, offered by ISO, provides interesting hints about the size distribution of grains responsible for the detected features.  相似文献   

19.
Direct observations of the nuclear surfaces of comets have been difficult; however a growing number of studies are overcoming observational challenges and yielding new information on cometary surfaces. In this review, we focus on recent determinations of the albedos, reflectances, and thermal inertias of comet nuclei. There is not much diversity in the geometric albedo of the comet nuclei observed so far (a range of 0.025 to 0.06). There is a greater diversity of albedos among the Centaurs, and the sample of properly observed TNOs(2) is still too small. Based on their albedos and Tisser and invariants, Fernández et al. (2001) estimate that about 5% of the near-Earth asteroids have a cometary origin, and place an upper limit of 10%. The agreement between this estimate and two other independent methods provide the strongest constraint to date on the fraction of objects that comets contribute to the population of near-Earth asteroids. There is a diversity of visible colors among comets, extinct comet candidates, Centaurs and TNOs. Comet nuclei are clearly not as red as the reddest Centaurs and TNOs. What Jewitt (2002) calls ultra-red matter seems to be absent from the surfaces of comet nuclei. Rotationally resolved observations of both colors and albedos are needed to disentangle the effects of rotational variability from other intrinsic qualities. New constraints on thermal inertia of comets are consistent with previous independent estimates. The thermal inertia estimates for Centaurs 2060 Chiron and 8405 Asbolus are significantly lower than predicted by thermal models, and also lower than the few upper limits or constraints known for active, ordinary nuclei.  相似文献   

20.
Radio observations from decimetric to submillimetric wavelengths are now a basic tool for the investigation of comets. Spectroscopic observations allow us: (i) to monitor the gas production rate of the comets, by directly observing the water molecule, or by observing secondary products (e.g., the OH radical) or minor species (e.g., HCN); (ii) to investigate the chemical composition of comets; (iii) to probe the physical conditions of cometary atmospheres: kinetic temperature and expansion velocity. Continuum observations probe large-size dust particles and (for the largest objects) cometary nuclei.Comets are classified from their orbital characteristics into two separate classes: (i) nearly isotropic, mainly long-period comets and (ii) ecliptic, short-period comets, the so-called Jupiter-family comets (JFCs). These two classes apparently come from two different reservoirs, respectively, the Oort cloud and the trans-Neptunian scattered disc. Due to their different history and—possibly—their different origin, they may have different chemical and physical properties that are worth being investigated.The present article reviews the contribution of radio observations to our knowledge of the JFCs. The difficulty of such a study is the commonly low gas and dust productions of these comets. Long-period, nearly isotropic comets from the Oort cloud are better known from Earth-based observations. On the other hand, JFCs are more easily accessed by space missions. However, unique opportunities to observe JFCs are offered when these objects come by chance close to the Earth (like 73P/Schwassmann-Wachmann 3 in 2006), or when they exhibit unexpected outbursts (as did 17P/Holmes in 2007).About a dozen JFCs were successfully observed by radio techniques up to now. Four to ten molecules were detected in five of them. No obvious evidence for different properties between JFCs and other families of comets is found, as far as radio observations are concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号