首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arecibo timing and single-pulse observations of 17 pulsars   总被引:1,自引:0,他引:1  
We have analysed the soft X-ray emission in a wide area of the Sculptor supercluster by using overlapping ROSAT Position Sensitive Proportional Counter pointings. After subtraction of the point sources, we have found evidence for extended, diffuse soft X-ray emission. We have investigated the nature of such extended emission through the cross-correlation with the density of galaxies as inferred from the Münster Redshift Survey. In particular, we have analysed the correlation as a function of the temperature of the X-ray emitting gas. We have found a significant correlation of the galaxy distribution only with the softest X-ray emission (0.1 – 0.3 keV) and only for gas temperatures   kT < 0.5 keV  . We have excluded the fact that this soft X-ray diffuse emission, and its correlation with the galaxy distribution, is significantly contributed by unresolved active galactic nuclei, groups of galaxies or individual galaxies. The most likely explanation is that the soft, diffuse X-ray emission is tracing warm–hot intergalactic medium, with temperatures below 0.5 keV, associated with the large-scale structures in the Sculptor supercluster.  相似文献   

2.
From 2001 January to 2002 June, we monitored PSRs B0329+54, B0823+26, B1929+10, B2020+28 and B2021+51 using the Nanshan 25-m radio telescope of the Urumqi Observatory to study their diffractive interstellar scintillation (DISS). The average interval between observations was about 9 d and the observation duration ranged between 2 and 6 h depending on the pulsar. Wide variations in the DISS parameters were observed over the 18-month data span. Despite this, the average scintillation velocities are in excellent agreement with the proper motion velocities. The average two-dimensional autocorrelation function for PSR B0329+54 is well described by a thin-screen Kolmogorov model, at least along the time and frequency axes. Observed modulation indices for the DISS time-scale and bandwidth and the pulsar flux density are greater than values predicted for a Kolmogorov spectrum of electron density fluctuations. Correlated variations over times that are long compared to the nominal refractive scintillation time are observed, suggesting that larger scale density fluctuations are important. For these pulsars, the scintillation bandwidth as a function of frequency has a power-law index  (∼3.6)  much less than that expected for Kolmogorov turbulence (∼4.4). Sloping fringes are commonly observed in the dynamic spectra, especially for PSR B0329+54. The detected range of fringe slopes are limited by our observing resolution. Our observations are sensitive to larger-scale fringes and hence smaller refractive angles, corresponding to the central part of the scattering disc.  相似文献   

3.
4.
5.
6.
We report on multi-epoch, multifrequency observations of 64 pulsars with high spectral and time resolution. Scintillation parameters were obtained for 49 pulsars, including 13 millisecond pulsars. Scintillation speeds were derived for all 49, which doubles the number of pulsars with speeds measured in this way. There is excellent agreement between the scintillation speed and proper motion for the millisecond pulsars in our sample using the simple assumption of a mid-placed scattering screen. This indicates that the scaleheight of scattering electrons is similar to that of the dispersing electrons. In addition, we present observations of the Vela pulsar at 14 and 23 GHz, and show that the scintillation bandwidth scales as ν3.93 over a factor of 100 in observing frequency. We show that for PSR J0742−2822, and perhaps PSR J0837−4135, the Gum nebula is responsible for the high level of turbulence along their lines of sight, contrary to previous indications. There is a significant correlation between the scintillation speeds and the product of the pulsar's period and period derivative for the 'normal' pulsars. However, we believe this to be caused by selection effects both in pulsar detection experiments and in the choice of pulsars used in scintillation studies.  相似文献   

7.
We study the concept of radius-to-frequency mapping using a geometrical method for the estimation of pulsar emission altitudes. The semi-empirical relationship proposed by Kijak &38; Gil is examined over three decades of radio frequency. It is argued that the emission region in a millisecond pulsar occupies the magnetosphere over a distance of up to about 30 per cent of the light-cylinder radius, and that in a normal pulsar occupies up to approximately 10 per cent of the light-cylinder radius.  相似文献   

8.
Recent studies suggest that pulsars could be strong sources of TeV muon neutrinos provided positive ions are accelerated by pulsar polar caps to PeV energies. In such a situation, muon neutrinos are produced through the Δ-resonance in interactions of pulsar-accelerated ions with its thermal radiation field. High-energy gamma-rays should also be produced simultaneously in pulsar environment as both charged and neutral pions are generated in the interactions of energetic hadrons with the ambient photon fields. Here, we estimate TeV gamma-ray flux at the Earth from a few nearby young pulsars. When compared with the observations, we find that proper consideration of the effect of polar cap geometry in flux calculation is important. Incorporating such an effect, we obtain the (revised) event rates at the Earth due to a few potential nearby pulsars. The results suggest that pulsars are unlikely to be detected by the upcoming neutrino telescopes. We also estimate TeV gamma-ray and neutrino fluxes from pulsar nebulae for the adopted model of particle acceleration.  相似文献   

9.
We report on searches of the globular cluster Terzan 5 for low-luminosity and accelerated radio pulsars using the 64-m Parkes radio telescope. One new millisecond pulsar, designated PSR J1748−2446C, was discovered, having a period of 8.44 ms. Timing measurements using the 76-m Lovell radio telescope at Jodrell Bank show that it is a solitary pulsar and lies close to the core of the cluster. We also present the results of timing measurements which show that the longer period pulsar PSR J1748−2444 (formerly known as PSR B1744−24B) lies 10 arcmin from the core of the cluster and is unlikely to be associated with the cluster. We conclude that there are further pulsars to be detected in the cluster.  相似文献   

10.
We have observed a total of 67 pulsars at five frequencies ranging from 243 to 3100 MHz. Observations at the lower frequencies were made at the Giant Metre-Wave Telescope in India and those at higher frequencies at the Parkes Telescope in Australia. We present profiles from 34 of the sample with the best signal-to-noise ratio and the least scattering. The general 'rules' of pulsar profiles are seen in the data; profiles get narrower, the polarization fraction declines and outer components become more prominent as the frequency increases. Many counterexamples to these rules are also observed, and pulsars with complex profiles are especially prone to rule breaking. We hypothesize that the location of pulsar emission within the magnetosphere evolves with time as the pulsar spins down. In highly energetic pulsars, the emission comes from a confined range of high altitudes, in the middle range of spin down energies the emission occurs over a wide range of altitudes whereas in pulsars with low spin-down energies it is confined to low down in the magnetosphere.  相似文献   

11.
This paper presents a comparison of emission altitudes in very young and very old radio pulsars. The author confirms that the altitudes at which radio emission at a given frequency is generated depend on the pulsar period and age, although the latter dependence is quite weak.  相似文献   

12.
13.
Many radio pulsars exhibit glitches wherein the star's spin rate increases fractionally by ∼10−10–10−6. Glitches are ascribed to variable coupling between the neutron star crust and its superfluid interior. With the aim of distinguishing among different theoretical explanations for the glitch phenomenon, we study the response of a neutron star to two types of perturbations to the vortex array that exists in the superfluid interior: (1) thermal motion of vortices pinned to inner crust nuclei, initiated by sudden heating of the crust, (e.g., a starquake), and (2) mechanical motion of vortices (e.g., from crust cracking by superfluid stresses). Both mechanisms produce acceptable fits to glitch observations in four pulsars, with the exception of the 1989 glitch in the Crab pulsar, which is best fitted by the thermal excitation model. The two models make different predictions for the generation of internal heat and subsequent enhancement of surface emission. The mechanical glitch model predicts a negligible temperature increase. For a pure and highly conductive crust, the thermal glitch model predicts a surface temperature increase of as much as ∼2 per cent, occurring several weeks after the glitch. If the thermal conductivity of the crust is lowered by a high concentration of impurities, however, the surface temperature increases by ∼10 per cent about a decade after a thermal glitch. A thermal glitch in an impure crust is consistent with the surface emission limits following the 2000 January glitch in the Vela pulsar. Future surface emission measurements coordinated with radio observations will constrain glitch mechanisms and the conductivity of the crust.  相似文献   

14.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

15.
16.
17.
We present polarization profiles at 1.4 and 3.1 GHz for 14 young pulsars with characteristic ages less than 75 kyr. Careful calibration ensures that the absolute position angle of the linearly polarized radiation at the pulsar is obtained. In combination with previously published data, we draw three main conclusions about the pulse profiles of young pulsars. (i) Pulse profiles are simple and consist of either one or two prominent components. (ii) The linearly polarized fraction is nearly always in excess of 70 per cent. (iii) In profiles with two components, the trailing component nearly always dominates, only the trailing component shows circular polarization and the position angle swing is generally flat across the leading component and steep across the trailing component.
Based on these results, we can make the following generalizations about the emission beams of young pulsars. (i) There is a single, relatively wide cone of emission from near the last open field lines. (ii) Core emission is absent or rather weak. (iii) The height of the emission is between 1 and 10 per cent of the light cylinder radius.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号