首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The laser fluorination technique reported here for analyzing the oxygen isotope composition (δ18O) of fine quartz size fractions 50-20, 20-10, 10-5, 5-2, 2-1 and <1 μm has been validated by comparison with the ion microprobe technique. It yields accurate δ18O data with an external precision better than 0.15‰. This is a significant methodological improvement for isotopic studies dealing with materials such as soil or biogenic oxides and silicates: particles are often too small and recovered in insufficient amount to be easily handled for ion microprobe analysis. Both techniques were used to investigate δ18O composition of a Cretaceous quartzite and silcrete sequence from the South-East of France. Quartzite cements average 31.04 ± 1.93‰. They formed from Mid-Cretaceous seawater. Higher in the series, silcretes cements average 26.66 ± 1.36‰. They formed from Upper- or post-Upper-Cretaceous soil water and groundwater. Oxygen isotope data show that the silicification steps from one mineralogical phase to another and from one layer to another (including from an upper pedogenic silcrete to a lower groundwater silcrete) occurred in a closed or weakly evaporating hydrological system.  相似文献   

2.
The carbon, oxygen, and strontium isotope compositions of carbonate rocks from the upper Miocene Kudankulam Formation, southern India, were measured to understand palaeoenvironment and carbonate diagenesis of this formation. Both carbon and oxygen isotope ratios of various carbonate phases including whole rocks, ooids, molluscan mold-fill and sparry pore-fill calcite cements are depleted in 18O and 13C compared to those of contemporaneous seawater, indicating that the Kudankulam carbonates underwent extensive meteoric diagenesis. Based on δ13C and δ18O values for sparry calcite cements (pore-fill and molluscan mold-fill) formed in the meteoric diagenetic realm (δ13C from −7.8‰ to −6.0‰ and −9.0‰ to −7.0‰; δ18O from −9.2‰ to −6.5‰ and −9.4‰ to −2.6‰, respectively), it is interpreted that the diagenetic system was open and was proximal to the vadose water recharge zone. The negative δ18O values of various carbonate components (about −9.4‰ to −4.1‰ for whole rocks; about −8.4‰ to −2.6‰ for ooids) suggest that during the late Miocene the paleoclimate of the study area was humid, unlike today, probably due to the intense Indian monsoon system. The carbon isotope compositions (−7.9‰ to −3.6‰ for whole rocks; −4.9‰ to −1.5‰ for ooids) are consistent with the interpretation that the paleo-ecosystem comprised a significant proportion of C4 type plants, supporting a scenario of expansion of C4 plants during the late Miocene in the Indian subcontinent as far south as the southern tip of India. The 87Sr/86Sr ratios of the Kudankulam carbonates (0.70920 to 0.72130) are much greater than those of the contemporaneous or modern seawater (between 0.7089 and 0.7091) and show a general decrease up-sequence. Such high Sr isotope ratios indicate significant radiogenic 87Sr influx to the system from the Archean rocks exposed in the drainage area, implying that the deep-seated Archean rocks were already exposed in southern India by the late Miocene.  相似文献   

3.
Variations in the oxygen isotope composition (δ18O) of five cherts from the 1.9 Ga Gunflint iron formation (Canada) were studied at the micrometer scale by ion microprobe to try to better understand the processes that control δ18O values in cherts and to improve seawater paleotemperature reconstructions. Gunflint cherts show clearly different δ18O values for different types of silica with for instance a difference of ≈15‰ between detrital quartz and microquartz. Microquartz in the five samples is characterized by large intra sample variations in δ18O values, (δ18O of quartz varies from 4.6‰ to 6.6‰ at the 20 μm scale and from ≈12‰ to 14‰ at 2 μm scale). Isotopic profiles in microquartz adjacent to hydrothermal quartz veins demonstrate that microquartz more than ≈200 μm away from the veins has preserved its original δ18O value.At the micrometer spatial resolution of the ion probe, data reveal that microquartz has preserved a considerable δ18O heterogeneity that must be regarded as a signature inherited from its diagenetic history. Modelling of the δ18O variations produced during the diagenetic transformation of sedimentary amorphous silica precursors into microquartz allows us to calculate seawater temperature (Tsw at which the amorphous silica precipitated) and diagenesis temperature (Tdiagenesis at which microquartz formed) that reproduce the δ18O distributions (mean, range and shape) measured at micrometer scale in microquartz. The two critical parameters in this modelling are the δ18O value and the mass fraction of the diagenetic fluid. Under these assumptions, the most likely ranges for Tsw and Tdiagenesis are from 37 to 52 °C and from 130 to 170 °C, respectively.  相似文献   

4.
Sulfide mineralization in the Voisey’s Bay Intrusion, Labrador, Canada, is closely associated with country rock xenoliths that have extensively reacted with basaltic magma. In order to better understand the processes that control the assimilation of country rocks by mafic magma, a detailed study of oxygen isotope systematics related to magma-country rock interaction in the Voisey’s Bay area was undertaken. Protracted interaction of the xenoliths with magma produced refractory mineral assemblages in the xenoliths (2-10 cm in diameter) composed of Ca-rich plagioclase, corundum, hercynite, and minor magnetite. Overgrowth rims of plagioclase and biotite that surround most xenoliths separate the restites from the enclosing igneous matrix. The δ18O values of minerals from regionally metamorphosed pelitic and quartzofeldspathic protoliths are: plagioclase (8.7-12.3‰), orthoclase (9.5-9.8‰), biotite (5.2-8.7‰), garnet (8.3-10.8‰), pyroxene (8.0-10.1‰), and quartz (9.6-14.0). The δ18O values of minerals from the hornfels in the contact aureole of the intrusion are consistent with modeling which indicates that as a result of essentially closed system contact metamorphism oxygen isotope values should differ only slightly from those of the protoliths. Hercynite, plagioclase, and corundum separates from the xenoliths have δ18O values that vary from 2.9‰ to 10.5‰, 5.6‰ to 10.9‰, and 2.0‰ to 6.8‰, respectively. Although a siliceous 18O-enriched melt has been lost from the xenoliths, corundum, and feldspar δ18O values are significantly lower than expected through melt loss alone. The relatively low δ18O values of minerals from the xenoliths may be a function of incomplete isotopic exchange with surrounding mafic magma which had a δ18O value of ∼5.5‰ to 6.0‰. The high-18O melt that was released from the xenoliths is partially recorded in the plagioclase overgrowth on the margin of the xenoliths (δ18O values from 6.2‰ to 10.7‰), and in hercynite that replaced corundum. However, mass balance calculations indicate that a portion of the partial melt must have been transferred to magma that was moving through the conduit system. δ18O and δD values of biotite surrounding the plagioclase overgrowth range from 5.0‰ to 6.2‰ and −58‰ to −80‰, respectively. These data suggest that the outermost rim associated with many xenoliths has closely approached isotopic equilibrium with uncontaminated mafic magma. The current gabbroic to troctolitic matrix of the xenoliths shows no evidence for contamination by the high-18O partial melt from the xenoliths. The feldspar and biotite overgrowths on the xenoliths that formed after the motion of the xenoliths relative to the magma had stopped prevented further isotopic exchange between the xenoliths and final magma. The minerals within the xenoliths are not in oxygen isotopic equilibrium with each other, due in part to rapid thermal equilibration, partial melting, and partial exchange with flow through magma.  相似文献   

5.
《Applied Geochemistry》1995,10(5):531-546
The petrography, fluid inclusion thermometry and isotope geochemistry of diagenetic cements are used to reconstruct the pore-fluid history of the Middle Jurassic Brent Group reservoir sandstones in the Alwyn South area of the U.K. North Sea. The study focuses on a relatively limited area of three adjacent reservoir compartments at successively higher structural levels. The cement assemblage of kaolinite, quartz and illite has resulted in severe deterioration of otherwise good reservoir quality. Early precipitation of vermiform and late blocky kaolinite was succeeded by a period of relatively intense illite precipitation. Temperature estimates for kaolinite precipitation of 80°C andδ18O of ≈ + 15‰ (±3‰) suggest co-existing fluids ofδ18O ≈ −3‰. Quartz cementation overlapped both kaolinite and illite formation. Fluid inclusion data indicate that quartz cementation took place at temperatures of 109±7°C. Pore fluid salinities were ≈4 wt% NaCl with a H2OO isotopic composition of ≈ -1 %o ± 0.5‰ SMOW. The fluids which precipitated coexisting illite were compositionally homogeneous with equilibriumδ18O water compositions of +0.5‰ SMOW. Illite SD values range from −33 to −50‰ SMOW. These fluid inclusion and isotopic data suggest that both quartz and illite were precipitated from pore waters with a uniform, marine signature. This is consistent with the predominantly marine to paralic depositional context of the Brent Group in Alywn South. Illite precipitation was followed by hydrocarbon emplacement between the Middle Eocene and Lower Oligocene.  相似文献   

6.
《Sedimentology》2018,65(3):745-774
This paper explores little investigated diagenesis of spicule‐dominated sediments, based on Permian spiculites and cool‐water carbonates of the Tempelfjorden Group in central Spitsbergen. Field observations, petrography, stable isotope geochemistry, and mineralogical and chemical analyses reveal that the strata have been subjected to multistage diagenesis as the result of silica phase transitions at medium burial depths and deep‐burial overprinting. The growth of silica concretions occurred during the opal‐A/opal‐CT conversion and was controlled by the content and distribution of clay and spicules in the sediment, resulting in a variety of megascopic silica fabrics. Opal‐CT was subsequently dissolved, and all silica is now in a stable quartz stage. Petrographically, the rocks are characterized by a variety of chalcedony and quartz cements which perfectly preserve precursor textures. Most cements precipitated from silica‐oversaturated fluids, and their shapes reflect the silica saturation state and geometry of the pore space. Some microquartz and cryptoquartz also formed by a solid–solid inversion (recrystallization) of chalcedony. The cements have δ 18O values between +30‰ and +20‰ Standard Mean Ocean Water and display a systematic depletion in 18O from the first to the last crystallized, interpreted to reflect a gradual increase in temperature during burial. The precipitation of quartz cements started in the Middle Triassic when the strata passed the 19°C isotherm at burial depths of ca 600 m, and was completed in the mid‐Cretaceous, 2·3 km beneath the sea floor at temperatures of 75°C. Late diagenetic overprinting of the chert includes fracturing, brecciation and cementation with carbonate cements having δ 18O values between +2‰ and −30‰ Pee Dee Belemnite and δ 13C values between +4‰ and −14‰ Pee Dee Belemnite; they are linked to hot solutions introduced during Cretaceous volcanism or Palaeogene tectonism. This study illustrates the diagenetic pathway during burial of spicule‐rich sediments in a closed system and thereby provides a baseline for studies of more complexly altered chert deposits.  相似文献   

7.
A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (<1 km) quartz arenites of the St. Peter Sandstone (in SW Wisconsin) constrains temperature and fluid sources during diagenesis. Quartz overgrowths are syntaxial (optically continuous) and show complex luminescent zonation by cathodoluminescence. Detrital quartz grains were separated from 53 rocks and analyzed for oxygen isotope ratio by laser fluorination, resulting in an average δ18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ18O between 9.8‰ and 16.7‰ (n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ18O = 29.3 ± 1.0‰ (1SD, n = 161).Given the similarity, on average, of δ18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from <1 to 21 vol.% cement, with one outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement.Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ18O values of −10‰ to −5‰ at 10-30 °C. This interpretation runs counter to conventional wisdom based on fibrous or opaline silica cements suggesting that the formation of syntaxial quartz overgrowths requires higher temperatures. While metastable silica cements commonly form at high degrees of silica oversaturation following rapid break-down reactions of materials such as of feldspars or glass, the weathering of a clean quartz arenite is slower facilitating chemical equilibrium and precipitation of crystallographically oriented overgrowths of α-quartz.  相似文献   

8.
A large chondrule from Semarkona, the most primitive ordinary chondrite known, has been discovered to contain a record of mass transport during its formation. In most respects, it is a normal Type I, group A1, low-FeO chondrule that was produced by reduction and mass-loss during the unidentified flash-heating event that produced the chondrules, the most abundant structural component in primitive meteorites. We have previously measured elemental abundances and abundance profiles in this chondrule. We here report oxygen isotope ratio abundances and ratio abundance profiles. We have found that the mesostasis is zoned in oxygen isotope ratio, with the center of the chondrule containing isotopically heavier oxygen than the outer regions, the outer regions being volatile rich from the diffusion of volatiles into the chondrule during cooling. The δ17O values range from −2.0‰ to 9.9‰, while δ18O range from −1.9‰ to 9.6‰. More importantly, a plot of δ17O against δ18O has a slope of 1.1 ± 0.2 (1σ) and 0.88 ± 0.10 (1σ) when measured by two independent methods. Co-variation of δ17O with δ18O that does not follow mass-dependent fractionation has often been seen in primitive solar system materials and is usually ascribed to the mixing of different oxygen reservoirs. We argue that petrographic and compositional data indicate that this chondrule was completely melted at the time of its formation so that relic grains could not have survived. Furthermore, there is petrographic and compositional evidence that there was no aqueous alteration of this chondrule subsequent to its formation. Although it is possible to formulate a series of exchanges between the chondrule and external 16O-rich and 16O-poor reservoirs that may explain the detailed oxygen isotope systematics of this chondrule, such a sequence of events looks very contrived. We therefore hypothesize that reduction, devolatilization, and crystallization of the chondrule melt may have produced 16O-rich olivines and 16O-poor mesostasis plotting on a slope-one line as part of the chondrule-forming process in an analogous fashion to known chemical mass-independent isotopic fractionation mechanisms. During cooling, volatiles and oxygen near the terrestrial line in oxygen isotope composition produced the outer zone of volatile rich and 16O-rich mesostasis. The chondrule therefore not only retains a record of considerable mass transport accompanying formation, but also may indicate that the isotopes of oxygen underwent mass-independent fractionation during the process.  相似文献   

9.
The Reykjanes geothermal system is located on the landward extension of the Mid-Atlantic Ridge in southwest Iceland, and provides an on-land proxy to high-temperature hydrothermal systems of oceanic spreading centers. Previous studies of elemental composition and salinity have shown that Reykjanes geothermal fluids are likely hydrothermally modified seawater. However, δD values of these fluids are as low as −23‰, which is indicative of a meteoric water component. Here we constrain the origin of Reykjanes hydrothermal solutions by analysis of hydrogen and oxygen isotope compositions of hydrothermal epidote from geothermal drillholes at depths between 1 and 3 km. δDEPIDOTE values from wells RN-8, -9, -10 and -17 collectively range from −60 to −78‰, and δ18OEPIDOTE in these wells are between −3.0 and 2.3‰. The δD values of epidote generally increase along a NE trend through the geothermal field, whereas δ18O values generally decrease, suggesting a southwest to northeast migration of the geothermal upflow zone with time that is consistent with present-day temperatures and observed hydrothermal mineral zones. For comparative analysis, the meteoric-water dominated Nesjavellir and Krafla geothermal systems, which have a δDFLUID of ∼ −79‰ and −89‰, respectively, show δDEPIDOTE values of −115‰ and −125‰. In contrast, δDEPIDOTE from the mixed meteoric-seawater Svartsengi geothermal system is −68‰; comparable to δDEPIDOTE from well RN-10 at Reykjanes.Stable isotope compositions of geothermal fluids in isotopic equilibrium with the epidotes at Reykjanes are computed using published temperature dependent hydrogen and oxygen isotope fractionation curves for epidote-water, measured isotope composition of the epidotes and temperatures approximated from the boiling point curve with depth. Calculated δD and δ18O of geothermal fluids are less than 0‰, suggesting that fluids of meteoric or glacial origin are a significant component of the geothermal solutions. Additionally, δDFLUID values in equilibrium with geothermal epidote are lower than those of modern-day fluids, whereas calculated δ18OFLUID values are within range of the observed fluid isotope composition. We propose that modern δDEPIDOTE and δDFLUID values are the result of diffusional exchange between hydrous alteration minerals that precipitated from glacially-derived fluids early in the evolution of the Reykjanes system and modern seawater-derived geothermal fluids. A simplified model of isotope exchange in the Reykjanes geothermal system, in which the average starting δDROCK value is −125‰ and the water to rock mass ratio is 0.25, predicts a δDFLUID composition within 1‰ of average measured values. This model resolves the discrepancy between fluid salinity and isotope composition of Reykjanes geothermal fluids, explains the observed disequilibrium between modern fluids and hydrothermal epidote, and suggests that rock-fluid interaction is the dominant control over the evolution of fluid isotope composition in the hydrothermal system.  相似文献   

10.
In the Tuoshi oilfield,located in the Cenozoic Jianghan Basin of southeastern China ,there have been found hydrocarbon reservoirs hosted in lacustrine sandstones of the Eogene Xingouzui Formation.The main diagenetic features identified in these sandstones include the dissolution of detrital K-feldspar and albite grains,the precipitation of quartz as overgrowths and /or cements ,and the precipitation and /or transformation of clay minerals.These diagenetic features were interpreted to have occurred in early,intermediate and late stages,based on the burial depth.The kinetics of fluid-mineral reactions and the concentrations of aqueous species au each stage of diagenesis were simulated numerically for these lacustrine sandstones,using a quasi-sta-tionary state approximation that incorporates simultaneous chemical reactions in a time-space continuum.During the early diagenetic stage,pore fluid was weakly acidic,which resulted in dissolution of K-feldspar and albite and,therefore,led to the release of K^ ,Na^ ,Al^3 and SiO2(aq) into the diagenetic fluid.The increased K^ ,Na^ ,Al^3 and SiO2(aq) concentrations in the diagenetic fluid caused the precipitation of quartz,kaolinite and illite.At the beginning of the intermediate diagenetic stage the concentration of H^ was built up due to the decomposition of organic matter,which was responsible for further dissolution of K-feldspar and albite and pre-cipitation of quartz,kaolinite,and illite.During the late diagenetic stage,the pore fluid was weakly alkaline,K-feldspar became stable and was precipitated with quartz and clay minerals.When the burial depth was greater than 3000 m,the pore fluids became supersaturated with respect to allbite,but undersaturated with respect to quartz,resulting in the precipitation of albite and the dissolution of quartz.The diagenetic reactions forecasted in the numerical modeling closely matched the diagenet-ic features identified by petrographic examination, and therefore,can help us to gain a better understanding of the diagenetic processes and associated porosity evolution in sandstone reservoirs.  相似文献   

11.
Forty-nine aragonitic and calcitic shells from 14 species of marine tropical molluscs (Bivalvia, Gastropoda, Polyplacophora) and ambient waters from Martinique have been analyzed for their carbon and oxygen isotope compositions. Mineralogy of shells was systematically determined by Raman spectroscopy that reveals composite shell structures and early processes of diagenetic alteration. In mangrove, brackish waters result from the mixing between 89±1% of seawater and 11±1% of freshwater, a hydrological budget quantified by both oxygen isotope and salinity mass balance calculations. Mollusc shells from the mangrove environment (S=31‰; δ18O=0.5‰) are characterized by mean δ13C values (−1.2‰) lower than those (+2.6‰) living in the open sea (S=35‰; δ18O=1‰). These low carbon isotope compositions result from the oxidation of organic matter into bicarbonate ions used in the building of mollusc shells. The oxygen isotope compositions of the studied mollusc species are mainly controlled by the temperature and composition of seawater whereas the role of the so-called “vital effects” is negligible. Contrasting with carbon isotopes, variability in the δ18O values among and within species of mollusc shells is very low (1σ=0.15) for a given littoral environment. Using ambient temperatures of seawater (28-30 °C), oxygen isotope fractionations between all studied living species and environmental waters match those extrapolated from the fractionation equation established for molluscs by Grossman and Ku [Chem. Geol., Isot. Geosci. Sect. 59 (1986) 59] in the range 3-20 °C. By analyzing calcite and aragonite layers from the same shell or by comparing shells from different species living in the same environment, there is no evidence that oxygen isotope fractionation between aragonite and water differs from that between calcite and water. On the basis of these results, we conclude that the oxygen isotope compositions of shells from most fossil mollusc species are suitable to estimate past seawater temperatures at any paleolatitude.  相似文献   

12.
This article reviews the applications of light stable isotope, including carbon, oxygen and hydrogen, in thestudies on origin and formation temperature of authigenic carbonate, quartz and clay minerals. Theoretical knowledge andanalytical methods for major light stable isotopes are introduced in detail. Negative and positive δ13C values indicatesignificant differences on the origin of carbonate cements. The δ18O value is an effective palaeotemperature scale forauthigenic minerals formation. Various fractionation equations between δ18O and temperature are proposed for carbonatecements, quartz cements and clay minerals, whose merit and demerit, applicable conditions are clarified clearly. Clumpedisotope analysis can reconstruct the temperature of carbonate precipitation with no requirement on the δ18O of initial waters,which makes temperature calculation of carbonate cements formation more convenient and accurate. Hydrogen and oxygenisotopes mainly reflect the origin of diagenetic fluid for clay mineral formation, providing reliable evidence for diageneticenvironment analysis. This work aims at helping researchers for better understanding the applications of light stable isotopein sandstone diagenesis.  相似文献   

13.
The Middle Muschelkalk (Middle Triassic) of the Catalan Coastal Range (north-east Spain) comprises sandstone, mudstone, anhydrite and minor carbonate layers. Interbedded sandstones and mudstones which are dominant in the north-eastern parts of the basin are terminal alluvial fan deposits. South-westward in the basin, the rocks become dominated by interbedded evaporites and mudstones deposited in sabkha/mudflat environments. The diagenetic and pore water evolution patterns of the Middle Muschelkalk suggest a strong facies control. During eodiagenesis, formation of microdolomite, anhydrite, baryte, magnesite, K-feldspar and mixed-layer chlorite/smectite was favoured within and adjacent to the sabkha/mudflat facies, whereas calcite, haematite, mixed-layer illite/smectite and quartz formed mainly in the alluvial facies. Low δ18OSMOW values for microdolomite (+23.7 to +28.4%) and K-feldspar overgrowths (+17.3 to +17.7%) suggest either low-temperature, isotopic disequilibrium or precipitation from low-18O porewaters. Low-18O waters might have developed, at least in part, during low-temperature alteration of volcanic rock fragments. During mesodiagenesis, precipitation of quartz overgrowths and coarse dolomite occurred in the alluvial sandstones, whereas recrystallization of microdolomite was dominant in the sabkha/mudflat facies. The isotopic compositions of these mesogenetic phases reflect increasing temperature during burial. Upon uplift and erosion, telogenetic calcite and trace haematite precipitated in fractures and replaced dolomite. The isotopic composition of the calcite (δ18OSMOW=+21.5 to +25.6%o; δ13C= 7.7 to - 5.6%o) and presence of haematite indicate infiltration of meteoric waters.  相似文献   

14.
中国南方灯影峡期(晚前寒武纪)是白云岩广泛发育的海洋碳酸盐沉积时期,在灯影组中部发育从海水直接沉积沉淀的原生白云岩,目前仍保留其原始组构特征。从40个原生白云石(岩)中测得:泥晶白云石的δ13C值为3.64‰,δ18O值为-1.17‰(n=6);白云岩的13C值为3.52‰,δ18O值为-1.86‰(n=15);海水纤状白云石胶结物δ13C值为2.90‰,δ18O值2.65‰(n=8);海水刃状白云石胶结物的δ13C值为2.96‰,δ18O值为-2.41‰(n=8);晶纹层和海水纤状白云石胶结物的δ13C值为2.79‰,δ18O值为-3.13‰。40个岩样的δ13C平均值为3.25‰±0.44‰,δ18O平均值为-2.12‰±0.98‰(均以PDB标准)。对于灯影峡期海相云岩的原始δ13C和δ18O值,不采用所有样品的平均值,而是采用原生白云石沉积物与海水白云石结物δ13C值和δ18O值两个图示分布区重叠部分的最重同位素值,即:δ1C值为4.43‰(PDB标准),δ18O值为-0.62‰(PDB标准),将其作为灯影峡期海洋碳酸盐岩的原始同位素组成。对海水原生白云石胶结物包裹体盐度进行了测定,海水δ18O计算值为2.90(SMOW标准),用原始δ18O值计算的原生白云石形成时的海水温度为40.8 ℃。这说明中国南方灯影峡的海洋为炎热的较高的海水温度环境。  相似文献   

15.
Changes in the climatic conditions during the Late Quaternary and Holocene greatly impacted the hydrology and geochemical evolution of groundwaters in the Great Lakes region. Increased hydraulic gradients from melting of kilometer-thick Pleistocene ice sheets reorganized regional-scale groundwater flow in Paleozoic aquifers in underlying intracratonic basins. Here, we present new elemental and isotopic analyses of 134 groundwaters from Silurian-Devonian carbonate and overlying glacial drift aquifers, along the margins of the Illinois and Michigan basins, to evaluate the paleohydrology, age distribution, and geochemical evolution of confined aquifer systems. This study significantly extends the spatial coverage of previously published groundwaters in carbonate and drift aquifers across the Midcontinent region, and extends into deeper portions of the Illinois and Michigan basins, focused on the freshwater-saline water mixing zones. In addition, the hydrogeochemical data from Silurian-Devonian aquifers were integrated with deeper basinal fluids, and brines in Upper Devonian black shales and underlying Cambrian-Ordovician aquifers to reveal a regionally extensive recharge system of Pleistocene-age waters in glaciated sedimentary basins. Elemental and isotope geochemistry of confined groundwaters in Silurian-Devonian carbonate and glacial drift aquifers show that they have been extensively altered by incongruent dissolution of carbonate minerals, dissolution of halite and anhydrite, cation exchange, microbial processes, and mixing with basinal brines. Carbon isotope values of dissolved inorganic carbon (DIC) range from −10 to −2‰, 87Sr/86Sr ratios range from 0.7080 to 0.7090, and δ34S-SO4 values range from +10 to 30‰. A few waters have elevated δ13CDIC values (>15‰) from microbial methanogenesis in adjacent organic-rich Upper Devonian shales. Radiocarbon ages and δ18O and δD values of confined groundwaters indicate they originated as subglacial recharge beneath the Laurentide Ice Sheet (14-50 ka BP, −15 to −13‰ δ18O). These paleowaters are isolated from shallow flow systems in overlying glacial drift aquifers by lake-bed clays and/or shales. The presence of isotopically depleted waters in Paleozoic aquifers at relatively shallow depths illustrates the importance of continental glaciation on regional-scale groundwater flow. Modern groundwater flow in the Great Lakes region is primarily restricted to shallow unconfined glacial drift aquifers. Recharge waters in Silurian-Devonian and unconfined drift aquifers have δ18O values within the range of Holocene precipitation: −11 to −8‰ and −7 to −4.5‰ for northern Michigan and northern Indiana/Ohio, respectively. Carbon and Sr isotope systematics indicate shallow groundwaters evolved through congruent dissolution of carbonate minerals under open and closed system conditions (δ13CDIC = −14.7 to−11.1‰ and 87Sr/86Sr = 0.7080-0.7103). The distinct elemental and isotope geochemistry of Pleistocene- versus Holocene-age waters further confirms that surficial flow systems are out of contact with the deeper basinal-scale flow systems. These results provide improved understanding of the effects of past climate change on groundwater flow and geochemical processes, which are important for determining the sustainability of present-day water resources and stability of saline fluids in sedimentary basins.  相似文献   

16.
Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains (Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ18Owater = +700‰) and depleted water (δ18Owater = −40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation (εS > −13.2‰), δ18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 (εS < −22.7‰) the residual sulfate showed an increase of the sulfate δ18O close to the values of the enriched water of +700‰. In the experiments with δ18O-depleted water, the oxygen isotope values in the residual sulfate stayed fairly constant for strains Desulfovibrio desulfuricans, Desulfobacca acetoxidans and Desulfonatronovibrio hydrogenovorans. However, strain TRM1, which exhibits the lowest sulfur isotope fractionation factor (εS < −38.7‰) showed slightly decreasing δ18O values.Our results give strong evidence that the oxygen atoms of sulfate exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5′-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the “recycled” sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the stable isotope enrichment factor for sulfur measured during sulfate reduction. The reoxidation of intermediates of the sulfate reduction pathway does also strongly influence the sulfur stable isotope enrichment factor. This aforesaid reoxidation is probably dependent on the metabolic conversion of the substrate and therefore also influences the stable isotope fractionation factor indirectly in a rate dependent manner. However, this effect is only indirect. The sulfur isotope enrichment factors for the kinetic reactions themselves are probably not rate dependent.  相似文献   

17.
The long-lived (about 20 yr) bryozoan Adeonellopsis sp. from Doubtful Sound, New Zealand, precipitates aragonite in isotopic equilibrium with seawater, exerting no metabolic or kinetic effects. Oxygen isotope ratios (δ18O) in 61 subsamples (along three branches of a single unaltered colony) range from −0.09 to +0.68‰ PDB (mean = +0.36‰ PDB). Carbon isotope ratios (δ13C) range from +0.84 to +2.18‰ PDB (mean = +1.69‰ PDB). Typical of cool-water carbonates, δ18O-derived water temperatures range from 14.2 to 17.5 °C. Adeonellopsis has a minimum temperature growth threshold of 14 °C, recording only a partial record of environmental variation. By correlating seawater temperatures derived from δ18O with the Southern Oscillation Index, however, we were able to detect major events such as the 1983 El Niño. Interannual climatic variation can be recorded in skeletal carbonate isotopes. The range of within-colony isotopic variability found in this study (0.77‰ in δ18O and 1.34 in δ13C) means that among-colony variation must be treated cautiously. Temperate bryozoan isotopes have been tested in less than 2% of described extant species — this highly variable phylum is not yet fully understood.  相似文献   

18.
Several techniques have been introduced in the last decades for the dehydration and release of O2 from biogenic silica (opal-A) for oxygen-isotope analysis. However, only one silica standard is universally available: a quartz standard (NBS28) distributed by the IAEA, Vienna. Hence, there is a need for biogenic silica working standards. This paper compares the existing methods of oxygen-isotope analyses of opal-A and aims to characterize additional possible working standards to calibrate the δ18O values of biogenic silica. For this purpose, an inter-laboratory comparison was organized. Six potential working standard materials were analysed repeatedly against NBS28 by eight participating laboratories using their specific analytical methods. The materials cover a wide range of δ18O values (+23 to +43‰) and include diatoms (marine, lacustrine), phytoliths and synthetically-produced hydrous silica. To characterize the proposed standards, chemical analyses and imaging by scanning electron microscopy (SEM) were also performed. Despite procedural differences at each laboratory, all methods are in reasonable agreement with a standard deviation (SD) for δ18O values between 0.3‰ and 0.9‰ (1σ). Based on the results, we propose four additional biogenic silica working standards (PS1772-8: 42.8‰; BFC: 29.0‰; MSG60: 37.0‰; G95-25-CL leaves: 36.6‰) for δ18O analyses, available on request through the relevant laboratories.  相似文献   

19.
Lithological, chemical, and stable isotope data are used to characterize lacustrine tufas dating back to pre-late Miocene and later unknown times, capping different surfaces of a Tertiary carbonate (Sinn el-Kedab) plateau in Dungul region in the currently hyperarid south-western Egypt. These deposits are composed mostly of calcium carbonate, some magnesium carbonate and clastic particles plus minor amounts of organic matter. They have a wide range of (Mg/Ca)molar ratios, from 0.03 to 0.3. The bulk-tufa carbonate has characteristic isotope compositions: (δ13Cmean = −2.49 ± 0.99‰; δ18Omean = −9.43 ± 1.40‰). The δ13C values are consistent with a small input from C4 vegetation or thinner soils in the recharge area of the tufa-depositing systems. The δ18O values are typical of fresh water carbonates. Covariation between δ13C and δ18O values probably is a reflection of climatic conditions such as aridity. The tufas studied are isotopically similar to the underlying diagenetic marine chalks, marls and limestones (δ13Cmean = −2.06 ± 0.84‰; δ18Omean = −10.06 ± 1.39‰). The similarity has been attributed to common meteoric water signatures. This raises large uncertainties in using tufas (Mg/Ca)molar, δ13C and δ18O records as proxies of paleoclimatic change and suggests that intrinsic compositional differences in material sources within the plateau may mask climatic changes in the records.  相似文献   

20.
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号