首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An accurate prediction of solute infiltration in a soil profile is important in the area of environmental science, groundwater and civil engineering. We examined the infiltration pattern and monitored the infiltration process using a combined method of dye tracer test and electrical resistivity tomography (ERT) in an undisturbed field soil (1 m × 1 m). A homogeneous matrix flow was observed in the surface soil (A horizon), but a preferential flow along macropores and residual rock structure was the dominant infiltration pattern in the subsurface soil. Saturated interflow along the slopping boundaries of A and C1 horizons and of an upper sandy layer and a lower thin clay layer in the C horizon was also observed. The result of ERT showed that matrix flow started first in A horizon and then the infiltration was followed by the preferential flows along the sloping interfaces and macropores. The ERT did not show as much detail as the dye‐stained image for the preferential flow. However, the area with the higher staining density where preferential flow was dominant showed a relatively lower electrical resistivity. The result of this study indicates that ERT can be applied for the monitoring of solute transportation in the vadose zone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Macropores are important preferential pathways for the migration of water and contaminants through the vadose zone. The objective of this study was to examine small‐scale preferential flow processes during infiltration in macroporous, low permeability soils. A series of tension infiltration tests were conducted using Brilliant Blue dye tracer at two field sites in southwestern Ontario, Canada. The maximum applied pressure head was varied for each test and the resulting dye stain patterns and macropore networks were characterized by excavation, mapping, photography, and image analysis. Worm burrows were the dominant macropore type, with average macropore densities exceeding 400 m?2 and peak densities of more than 750 m?2 at 30 cm depth at both sites. Flow in macropores became significant at infiltration pressures > ? 3 cm, with corresponding increases in infiltration rate, soil water content variability (spatially and temporally), and depth of dye staining. The results demonstrated clear evidence for partially saturated macropore flow under porewater tension conditions and the associated importance of macropore–matrix interaction in controlling this flow. Field observations of transient infiltration showed that film and rivulet flow along macropores yielded vertical flow velocities exceeding 40 m d?1. Simple calculations showed that film flow along the walls and corners of irregularly shaped macropores could explain the observed results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Evaluating contaminants impacting wells in fractured crystalline rock requires knowledge of the individual fractures contributing water. This typically involves using a sequence of tools including downhole geophysics, flow meters, and straddle packers. In conjunction with each other these methods are expensive, time consuming, and can be logistically difficult to implement. This study demonstrates an unsteady state tracer method as a cost‐effective alternative for gathering fracture information in wells. The method entails introducing tracer dye throughout the well, inducing fracture flow into the well by conducting a slug test and then profiling the tracer concentration in the well to locate water contributing fractures where the dye has been diluted. By monitoring the development of the dilution zones within the wellbore with time, the transmissivity and the hydraulic head of the water contributing fractures can be determined. Ambient flow conditions and the contaminant concentration within the fractures can also be determined from the tracer dilution. This method was tested on a large physical model well and a bedrock well. The model well was used to test the theory underlying the method and to refine method logistics. The approach located the fracture and generated transmissivity values that were in excellent agreement with those calculated by slug testing. For the bedrock well tested, two major active fractures were located. Fracture location and ambient well conditions matched results from conventional methods. Estimates of transmissivity values by the tracer method were within an order of magnitude of those calculated using heat‐pulse flow meter data.  相似文献   

4.
Water content and movement in soil profile and hydrogen isotope composition (δD) of soil water, rainwater, and groundwater were examined in a subalpine dark coniferous forest in the Wolong National Nature Reserve in Sichuan, China, following rainfall events in 2003–2004. Light rainfall increased water content in the litter and at soil depth of 0–80 cm, but the increased soil water was lost in several days. Heavy rainfall increased soil water content up to 85% at depths of 0–40 cm. Following the light rainfall in early spring, the δD of water from the litter, humus, illuvial, and material layers decreased first and then gradually reached the pre‐rainfall level. In summer, light rainfall reached the litter humus, and illuvial layer, but did not hit the material layer. Heavy rainfall affected δD of water in all layers. The δD of soil interflow slightly fluctuated with rainfall events. The δD of shallow groundwater did not differ significantly among all rainfall events. Light rainfall altered the shape of δD profile curve of water in the upper layer of soil, whereas heavy rainfall greatly affected the shape of δD profile curve of water in all soil layers. Following the heavy rainfall, preferential flow initially occurred through macropores, decayed plant roots, and rocks at different depths of soil profile. With continuing rainfall, the litter and surface soil were nearly saturated or fully saturated, and infiltration became homogeneous and plug‐like. Forest soil water, particularly in deeper soil profile, was slightly affected by rainfall and, thus, can be a source of water supply for regional needs, particularly during dry seasons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This investigation was undertaken to develop an integrated method of downhole fracture characterization using a tracer. The method presented can be used to locate water-bearing fractures that intersect the well, to determine the ambient fracture flow rate and hydraulic head, and to calculate fracture transmissivity. The method was tested in two fractured crystalline bedrock wells located at the University of Connecticut in Storrs. The method entails injecting a tracer (uranine dye) into the well, while at the same time water is pumped out of the well. After steady-state conditions are reached, a borehole tracer concentration profile is developed. The dilution of the tracer is used to locate the inflowing fractures and to determine their flow rate. The fracture flow rate, plus the drawdown in the well, is then used to determine the fracture hydraulic head, transmissivity, and ambient flow rate.  相似文献   

6.
This study focuses on a 10-m2 plot within a granitic hillslope in Cevennes mountainous area in France, in order to study infiltration and subsurface hydrological processes during heavy rainfalls and flash floods. The monitoring device included water content at several depths (0–70 cm for the shallow soil water; 0–10 m for the deep water) during both intense artificial and natural rainfall events, chemical and physical tracers, time-lapse electrical resistivity tomography. During the most intense events, the infiltrated water was estimated to be some hundreds of millimetres, which largely exceeds the topsoil capacity (≤40 cm deep in most of the cases). The weathered/fractured rock area below the soil clearly has an active role in the water storage and sub-surface flow dynamics. Vertical flow was dominant in the first 0–10 m, and lateral flow was effective at 8–10 m depth, at the top of the saturated area. The speed of the vertical flow was estimated between 1 and 10 m/hr, whereas it was estimated between 0.1 and 1 m/hr for the lateral flow. The interpretation of the experiments might lead to a local pattern of the 2D-hydrological processes and profile properties, which could be generic for most of the mountainous catchments under Mediterranean climate. It suggests that fast triggering of floods at the catchment scale cannot be explained by a mass transfer within the hillslope, but should be due to a pressure wave propagation through the bedrock fractures, which allows exfiltration of the water downstream the hillslope.  相似文献   

7.
Markus Weiler   《Journal of Hydrology》2005,310(1-4):294-315
Simulating infiltration in soils containing macropores still provides unsatisfactory results, as existing models seem not to capture all relevant processes. Recent studies of macropore flow initiation in natural soils containing earthworm channels revealed a distinct flow rate variability in the macropores depending on the initiation process. When macropore flow was initiated at the soil surface, most of the macropores received very little water while a few macropores received a large proportion of the total inflow. In contrast, when macropore flow was initiated from a saturated or nearly saturated soil layer, macropore flow rate variation was much lower. The objective of this study was to develop, evaluate, and test a model, which combines macropore flow variability with several established approaches to model dual permeability soils. We then evaluate the INfiltration–INitiation–INteraction Model (IN3M) to explore the influence of macropore flow variability on infiltration behavior by performing a sensitivity analysis and applying IN3M to sprinkling and dye tracer experiments at three field sites with different macropore and soil matrix properties. The sensitivity analysis showed that the flow variability in macropores reduces interaction between the macropores and the surrounding soil matrix and thus increases bypass flow, especially for surface initiation of macropore flow and at higher rainfall intensities. The model application shows reasonable agreement between IN3M simulations and field data in terms of water balance, water content change, and dye patterns. The influence of macropore flow variability on the hydrological response of the soil was considerable and especially pronounced for soils where initiation occurs at the soil surface. In future, the model could be applied to explore other types of preferential flow and hence to get a generally better understanding of macropore flow.  相似文献   

8.
In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment–water interface and groundwater recharge under wetlands. A whole‐wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water‐level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40–80 cm of the soil surface. However, some bromide penetrated as deep as 2–3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

9.
Understanding recharge mechanisms and controls in karst regions is extremely important for managing water resources because of the dynamic nature of the system. The objective of this study was to evaluate water percolation through epikarst by monitoring water flow into a cave and conducting artificial irrigation and tracer experiments, at Sif Cave in Wadi Sussi, Israel from 2005 through 2007. The research is based on continuous high‐resolution direct measurements of both rainfall and water percolation in the cave chamber collected by three large PVC sheets which integrate drips from three different areas (17, 46, and 52 m2). Barrels equipped with pressure transducers record drip rate and volume for each of the three areas. The combined measured rainfall and cave data enables estimation of recharge into the epikarst and to better understand the relationship of rainfall‐recharge. Three distinct types of flow regimes were identified: (1) ‘Quick flow’ through preferential flow paths (large fractures and conduits); (2) ‘Intermediate flow’ through a secondary crack system; and (3) ‘Slow flow’ through the matrix. A threshold of ~100 mm of rain at the beginning of the rainy season is required to increase soil water content allowing later rainfall events to percolate deeper through the soil and to initiate dripping in the cave. During winter, as the soil water content rises, the lag time between a rain event and cave drip response decreases. Annual recharge (140–160 mm in different areas in the cave) measured represents 30–35% of annual rainfall (460 mm). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The headwaters of mountainous, discontinuous permafrost regions in north‐eastern Mongolia are important water resources for the semi‐arid country, but little is known about hydrological processes there. Run‐off generation on south‐facing slopes, which are devoid of permafrost, has so far been neglected and is totally unknown for areas that have been affected by recent forest fires. To fill this knowledge gap, the present study applied artificial tracers on a steppe‐vegetated south‐facing and on two north‐facing slopes, burned and unburned. Combined sprinkling and dye tracer experiments were used to visualize processes of infiltration and water fluxes in the unsaturated zone. On the unburned north‐facing slope, rapid and widespread infiltration through a wet organic layer was observed down to the permafrost. On the burned profile, rapid infiltration occurred through a combusted organic and underlying mineral layer. Stained water seeped out at the bottom of both profiles suggesting a general tendency to subsurface stormflow (SSF). Ongoing SSF could directly be studied 24 h after a high‐intensity rainfall event on a 55‐m hillslope section in the burned forest. Measurements of water temperature proved the role of the permafrost layer as a base horizon for SSF. Repeated tracer injections allowed direct insights into SSF dynamics: A first injection suggested rather slow dispersive subsurface flow paths; whereas 18 h later, a second injection traced a more preferential flow system with 20 times quicker flow velocities. We speculate that these pronounced SSF dynamics are limited to burned slopes where a thermally insulating organic layer is absent. On three south‐facing soil profiles, the applied tracer remained in the uppermost 5 cm of a silt‐rich mineral soil horizon. No signs of preferential infiltration could be found, which suggested reduced biological activity under a harsh, dry and cold climate. Instead, direct observations, distributed tracers and charcoal samples provided evidence for the occurrence of overland flow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The distribution of streamwater within ice‐covered lakes influences sub‐ice currents, biological activity and shoreline morphology. Perennially ice‐covered lakes in the McMurdo Dry Valleys, Antarctica, provide an excellent natural laboratory to study hydrologic–limnologic interactions under ice cover. For a 2 h period on 17 December 2012, we injected a lithium chloride tracer into Andersen Creek, a pro‐glacial stream flowing into Lake Hoare. Over 4 h, we collected 182 water samples from five stream sites and 15 ice boreholes. Geochemical data showed that interflow travelled West of the stream mouth along the shoreline and did not flow towards the lake interior. The chemistry of water from Andersen Creek was similar to the chemistry of water below shoreline ice. Additional evidence for Westward flow included the morphology of channels on the ice surface, the orientation of ripple marks in lake sediments at the stream mouth and equivalent temperatures between Andersen Creek and water below shoreline ice. Streamwater deflected to the right of the mouth of the stream, in the opposite direction predicted by the Coriolis force. Deflection of interflow was probably caused by the diurnal addition of glacial runoff and stream discharge to the Eastern edge of the lake, which created a strong pressure gradient sloping to the West. This flow directed stream momentum away from the lake interior, minimizing the impact of stream momentum on sub‐ice currents. It also transported dissolved nutrients and suspended sediments to the shoreline region instead of the lake interior, potentially affecting biological productivity and bedform development. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Heat as a ground water tracer   总被引:40,自引:0,他引:40  
Anderson MP 《Ground water》2005,43(6):951-968
Heat carried by ground water serves as a tracer to identify surface water infiltration, flow through fractures, and flow patterns in ground water basins. Temperature measurements can be analyzed for recharge and discharge rates, the effects of surface warming, interchange with surface water, hydraulic conductivity of streambed sediments, and basin-scale permeability. Temperature data are also used in formal solutions of the inverse problem to estimate ground water flow and hydraulic conductivity. The fundamentals of using heat as a ground water tracer were published in the 1960s, but recent work has significantly expanded the application to a variety of hydrogeological settings. In recent work, temperature is used to delineate flows in the hyporheic zone, estimate submarine ground water discharge and depth to the salt-water interface, and in parameter estimation with coupled ground water and heat-flow models. While short reviews of selected work on heat as a ground water tracer can be found in a number of research papers, there is no critical synthesis of the larger body of work found in the hydrogeological literature. The purpose of this review paper is to fill that void and to show that ground water temperature data and associated analytical tools are currently underused and have not yet realized their full potential.  相似文献   

14.
Water flow through a melting snow pack modifies its structure and stability and affects the release of water and nutrients into soils and surface waters. Field and laboratory observations indicate a large spatial variability on various scales of the liquid water content and flow, a dominant system feature currently not included in numerical models. We investigated experimentally water and dye tracer movement through microstructurally different snow pack horizons and the persistence of preferential flow paths. Naturally rounded snow of varying grain size was artificially packed to obtain well known conditions by sieving it into rectangular bins. Surface melt was induced with infrared lamps. The flow paths were visualized with tracers and liquid water content was monitored with time domain reflectometry probes. Vertical cuts through the snow pack were imaged. The dye tracer patterns allowed the two flow regimes ‘matrix flow’ and ‘preferential flow’ to be distinguished. Matrix flow is apparently dominated by film and capillary flow in the unsaturated snow matrix. The capillary barrier effect at a boundary between a fine over a coarse textured layer on matrix flow in snow was confirmed. In contrast, preferential flow appears as well‐defined flow fingers that advance from 0·1 to 1 cm s?1. During a melt phase, the advancing flow fingers enlarge and are only partially time invariant. It remains to be shown whether the continuum concept, including the Darcy–Buckingham law is apt to describe the extremely non‐linear nature of water flow and the travel time of solutes in snow under conditions of melt water percolation. Probably, snow packs that include faceted crystals and large variations in bulk density, feature more pronounced capillary barriers and preferential flow triggering, but also stronger impeding of fingers by lateral dispersion. Further, triggering and persistence of preferential flow is complicated by the usually transient infiltration rate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Identifying flows into, out of, and across boreholes is important for characterizing aquifers, determining the depth at which water enters boreholes, and determining the locations and rates of outflow. This study demonstrates how Single Borehole Dilution Tests (SBDTs) carried out under natural head conditions provide a simple and cheap method of identifying vertical flow within boreholes and determining the location of in‐flowing, out‐flowing, and cross‐flowing fractures. Computer simulations were used to investigate the patterns in tracer profiles that arise from different combinations of flows. Field tracer tests were carried out using emplacements of a saline tracer throughout the saturated length of boreholes and also point emplacements at specific horizons. Results demonstrated that SBDTs can be used to identify flowing fractures at the top and bottom of sections of vertical flow, where there is a change in vertical flow rate within a borehole, and also where there are consistent decreases in tracer concentration at a particular depth. The technique enables identification of fractures that might be undetected by temperature and electrical conductance logging, and is a simple field test that can be carried out without pumping the borehole.  相似文献   

16.
17.
18.
19.
Hydraulic fracturing has become an important technique for enhancing the permeability of hydrocarbon source rocks and increasing aquifer transmissivity in many hard rock environments where natural fractures are limited, yet little is known about the nature or behaviour of these hydraulically induced fractures as conduits to flow and transport. We propose that these fractures tend to be smooth based on observed hydraulic and transport behaviour. In this investigation a multi‐faceted approach was used to quantify the properties and characteristics of an isolated hydraulically induced fracture in crystalline rocks. Packers were used to isolate the fracture that is penetrated by two separate observation wells located approximately 33 m apart. A series of aquifer tests and an induced gradient tracer test were performed to better understand the nature of this fracture. Aquifer test results indicate that full recovery is slow because of the overall low permeability of the crystalline rocks. Drawdown tests indicate that the fracture has a transmissivity of 1–2 m2/day and a specific storage on the order of 2–9 × 10?7/m. Analysis of a potassium–bromide tracer test break through curve shows classic Fickian behaviour with minimal tailing analogous to parallel plate flow. Virtually all of the tracer was recovered, and the breakthrough curve dilution indicates that the swept area is only about 11% of a radial flow field and the estimated aperture is ≤0.5 mm, which implies a narrow linear flow region. These outcomes suggest that transport within these hydraulically induced ‘smooth’ fractures in crystalline rocks is rapid with minimal mixing, small local velocity fluctuations and no apparent diffusion into the host rock or secondary fractures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Saturation‐excess runoff is the major runoff mechanism in humid well‐vegetated areas where infiltration rates often exceed rainfall intensity. Although the Soil and Water Assessment Tool (SWAT) is one of the most widely used models, it predicts runoff based mainly on soil and land use characteristics, and is implicitly an infiltration‐excess runoff type of model. Previous attempts to incorporate the saturation‐excess runoff mechanism in SWAT fell short due to the inability to distribute water from one hydrological response unit to another. This paper introduces a modified version of SWAT, referred to as SWAT‐Hillslope (SWAT‐HS). This modification improves the simulation of saturation‐excess runoff by redefining hydrological response units based on wetness classes and by introducing a surface aquifer with the ability to route interflow from “drier” to “wetter” wetness classes. Mathematically, the surface aquifer is a nonlinear reservoir that generates rapid subsurface stormflow as the water table in the surface aquifer rises. The SWAT‐HS model was tested in the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region of New York, USA. SWAT‐HS predicted discharge well with a Nash‐Sutcliffe Efficiency of 0.68 and 0.87 for daily and monthly time steps. Compared to the original SWAT model, SWAT‐HS predicted less surface runoff and groundwater flow and more lateral flow. The saturated areas predicted by SWAT‐HS were concentrated in locations with a high topographic index and were in agreement with field observations. With the incorporation of topographic characteristics and the addition of the surface aquifer, SWAT‐HS improved streamflow simulation and gave a good representation of saturated areas on the dates that measurements were available. SWAT‐HS is expected to improve water quality model predictions where the location of the surface runoff matters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号