首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Land surface evapotranspiration is an important component both in earth surface heat and water bal-ance, on whose budgets weather and climate depend, to a great extent, for their changes are responsible for the formation and variation of vegetation features on the globe. Besides, the evapotranspiration is an im-portant topic of short-term flood forecasting and the estimation of runoff from mountainous sides. As a result, the problem as to the evapotranspiration has been one of the concerns in …  相似文献   

2.
Abstract

To explore the spatial and temporal variations of the reference evapotranspiration (ETref) is helpful to understand the response of hydrological processes to climate changes. In this study, ETref was calculated by the Penman-Monteith method (P-M method) using air temperature, wind speed, relative humidity and sunshine hours at 89 meteorological stations during 1961–2006 in the Yellow River Basin (YRB), China. The spatial distribution and temporal variations of ETref were explored by means of the kriging method, the Mann-Kendall (M-K) method and the linear regression model, and the causes for the variations discussed. The contribution of main meteorological variables to the variations of ETref was explored. From the results we found that: (1) the spatial distributions of ETref display seasonal variation, with similar spatial patterns in spring, summer and autumn; (2) temporal trends for ETref showed large variation in the upper, middle and lower regions of the basin, most of the significant trends (P?=?0.05) were detected in the middle and lower regions, and, in particular, the upward and downward trends were mainly detected in the middle region and lower region of the basin, respectively; and (3) sensitivity analysis identified the most sensitive variable for ETref as relative humidity, followed by air temperature, sunshine hours and wind speed at the basin scale.

Citation Yang, Zhifeng, Liu, Qiang & Cui, Baoshan (2011) Spatial distribution and temporal variation of reference evapotranspiration during 1961–2006 in the Yellow River Basin, China. Hydrol. Sci. J. 56(6), 1015–1026.  相似文献   

3.
    
Irrigation is the major water supply for crop production in water‐limited regions. However, this important water component is usually neglected or simplified in hydrological modelling primarily because information concerning irrigation is notably difficult to collect. To assess real effects of irrigation on the simulation of evapotranspiration (ET) in water‐limited region, the Community Land Model version 4 was established over a typical semi‐humid agricultural basin in the northern China – the Haihe River basin. In the irrigated cropland, incorporating an irrigation scheme can enhance the simulated ET and improve the simulation of spatial variability of soil moisture content. We found that different configurations in the irrigation scheme do not cause significant differences in the simulated annual ET. However, simulated ET with simulated irrigation differs clearly from that with observed irrigation in mean annual magnitude, long‐term trend and spatial distribution. Once the irrigation scheme is well‐calibrated against observations, it reasonably reproduces the interannual variability of annual irrigation, when irrigation water management is relatively stable. More importantly, parameter calibration should be consistent with the configuration of the source of irrigation water. However, an irrigation scheme with a constant parameter value cannot capture the trend in the annual irrigation amount caused by abrupt changes in agricultural water management. Compared with different remotely sensed ET products, the enhancement in the simulated ET by irrigation is smaller than the differences among these products, and the trend in simulated ET with the observed irrigation cannot be captured correctly by the remotely sensed ET. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
    
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
    
A simple conceptual hydrological model that explicitly includes the lateral movement of soil water and operates efficiently at the landscape scale is outlined. It is applied to five areas of ecological interest in the UK to provide distributed mean monthly soil moisture on a 50 m grid. As the model's driving variables—daily rainfall and potential evapotranspiration—are assumed constant over each of the tracts of land, the variability in soil moisture is due to different soil types and to topographic effects. Box plots of the mean monthly simulated soil moisture clearly show the spread of values occasioned by modelling the lateral water movement down the hillslope. The general magnitude of the results are compared with published data wherever possible and there is some discussion of the form of the curve used in the model to describe the attenuation of evapotranspiration with decreasing soil moisture. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
  总被引:2,自引:0,他引:2  
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
    
A lumped water balance model was used to derive a monthly water storage series in the Salado–Juramento southern basin, for the period 1954–1986. The evapotranspiration term was estimated using the Bouchet's complementary relationship. Different evapotranspiration formulas following the concepts of potential evapotranspiration and wet environmental evapotranspiration were used. The regional average groundwater levels and the specific yield were used to tune Bouchet's equation. The extrapolation of the water storage series to a secular period (1901–2002) was achieved using a synthetic annual discharge series. The water storage was deficient for most of the century, i.e. more than 60 years; nevertheless in the last 30 years, the system recovers half of the water previously lost. The singular spectral analysis showed that a significant low‐frequency signal is present in the water storage and precipitation series. The main cause of water storage variability would be given by precipitation, in spite of the vast anthropogenic changes on the basin. Anthropogenic effects would be reflected in the river discharges, where no significant signal is detected before 1970; however, an annual signal is insinuated after that year. The conclusions of this work could be different if we only looked at the 1954–1986 period. The results of that period suggest that the basin is primarily accumulating water instead of being mainly in deficit. Thus, here we demonstrated the importance of the secular analysis to illustrate the complete basin behaviour. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
黄河水资源贫乏,水污染严重,水资源供需矛盾日益尖锐,黄河流域水资源保护面临着诸多的困难和压力.新《水法》的颁布,给黄河水资源保护带来新的机遇和挑战,依法建立法制化、社会化的流域与区域相结合的水资源保护管理体系,完善法规,建立健全执法体系,以水功能区划管理为重心,实施入河总量控制,建立和完善重大水污染事件快速反应机制,加强水质监测机制与技术创新,加强水资源保护前期和科研工作,建设水资源保护信息管理系统,采取多部门联合治污等项措施,是做好黄河流域水资源保护工作的重要前提和任务.  相似文献   

10.
Abstract

The response of monthly 7-day low flow, monthly instantaneous peak flow, and monthly frequency of flood events to El Niño and La Niña episodes is investigated for 18 rivers that represent a diverse range of climatic types throughout New Zealand. A significant positive or negative deviation from the long-term average was observed in over half the possible combinations of river, streamflow index, and type of ENSO episode; significant deviations were most frequent in the case of low flow, especially during La Niña episodes. Patterns of streamflow response differ widely between rivers, and the response of a given river to individual ENSO episodes is very variable. The patterns of streamflow response to ENSO are consistent to some extent with the climatic effects of ENSO already identified by meteorologists. Two core regions can be defined in which streamflow tends to respond in the same way. These are in the northeast of the North Island, and in the axial ranges of the South Island, where there are significant effects of ENSO on the frequency and duration of rain-bearing northeasterly and westerly winds respectively. The patterns of response strongly reflect topography, and the exposure of catchments to predominant air masses.  相似文献   

11.
  总被引:1,自引:0,他引:1  
Tao Gao  Huailiang Wang 《水文研究》2017,31(13):2412-2428
The Mann–Kendall test, composite analysis, and 68 high‐quality meteorological stations were used to explore the spatiotemporal variations and causes of precipitation extremes over the Yellow River basin (YRB) during the period of 1960–2011. Results showed that (a) the YRB is characterized by decreases of most precipitation indices, excluding the simple daily intensity index, which has increasing trends in most locations, suggesting that the intensity of rainfall and the probability of occurrence of droughts have increased during the last decades. (b) Trends of extreme precipitation show mixed patterns in the lower reach of the YRB, where drought–flood disasters have increased. The increases in heavy rainfall and decreases in consecutive wet days in recent years over the northwestern portions of the YRB indicate that the intensity and frequency of above‐normal precipitation have been trending upward in domains. In the central‐south YRB, the maximum 1‐day precipitation (RX1day) and precipitation on extremely wet days (R99p) have significantly increased, whereas the number of consecutive dry days has declined; these trends suggest that the intensity of precipitation extremes has increased in those regions, although the frequency of extreme and total rainfall has decreased. (c) The spatial distributions of seasonal trends in RX1day and maximum 5‐day precipitation (RX5day) exhibited less spatial coherence, and winter is becoming the wettest season regionwide, particularly over the central‐south YRB. (d) There were multiple and overlapping cycles of variability for most precipitation indices, indicating variations of time and frequency. (e) Elevation is intimately correlated with precipitation indices, and a weakening East Asian summer monsoon during 1986–2011 compared to that in 1960–1985 may have played an important role in the declines in most indices over the YRB. Therefore, the combined effects from local and teleconnection forcing factors have collectively influenced the variations in precipitation extremes across the YRB. This study may provide valuable evidence for the effective management of water resources and the conduct of agricultural activities at the basin scale.  相似文献   

12.
  总被引:2,自引:0,他引:2  
Understanding the impacts of climate change and human activity on the hydrological processes in river basins is important for maintaining ecosystem integrity and sustaining local economic development. The objective of this study was to evaluate the impact of climate variability and human activity on mean annual flow in the Wei River, the largest tributary of the Yellow River. The nonparametric Mann–Kendall test and wavelet transform were applied to detect the variations of hydrometeorological variables in the semiarid Wei River basin in the northwestern China. The identifications were based on streamflow records from 1958 to 2008 at four hydrological stations as well as precipitation and potential evapotranspiration (PET) data from 21 climate stations. A simple method based on Budyko curve was used to evaluate potential impacts of climate change and human activities on mean annual flow. The results show that annual streamflow decreased because of the reduced precipitation and increased PET at most stations. Both annual and seasonal precipitation and PET demonstrated mixed trends of decreasing and increasing, although significant trends (P < 0.05) were consistently detected in spring and autumn at most stations. Significant periodicities of 0.5 and 1 year (P < 0.05) were examined in all the time series. The spectrum of streamflow at the Huaxian station shows insignificant annual cycle during 1971–1975, 1986–1993 and 1996–2008, which is probably resulted from human activities. Climate variability greatly affected water resources in the Beiluo River, whereas human activities (including soil and water conservation, irrigation, reservoirs construction, etc.) accounted more for the changes of streamflow in the area near the Huaxian station during different periods. The results from this article can be used as a reference for water resources planning and management in the semiarid Wei River basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
    
The temporal trends of reference evapotranspiration (ETref) reflect the combined effects of radiometric and aerodynamic variables, such as global solar radiation (Rs), wind speed, relative humidity and air temperature. The temporal trends of annual ETref during 1961–2006 calculated by Penman‐Monteith method were explored and the underlying causes for these trends were analysed in the Yellow River Basin (YRB). The contributions of key meteorological variables to the temporal trend of ETref were detected using the detrended method and then sensitivity coefficients of ETref to meteorological variables were determined. For ETref, positive trends in the upper, middle and whole of YRB, and significant negative trend (P = 0·05) in the lower basin were obtained by the linear fitted model. Significant increasing trend (P = 0·05) in air temperature and decreasing trend in relative humidity were the main causes for the increasing trends of ETref in the upper, middle and whole basins. For the whole basin, the increasing trend of ETref was mainly caused by the significant increase (P = 0·05) in air temperature and to a lesser extent by a decrease in the relative humidity, decreasing trends of Rs and wind speed reduced ETref. The spatial distribution of sensitivity coefficients addressed that the sensitive regions for ETref response to the changes of the four meteorological variables are different in the YRB. The sensitive region lay in the upper basin for Rs, the northwest portion of the middle basin for wind speed, the south portion of YRB for relative humidity and the west portion of the upper basin and the north portion of the middle basin for air temperature. In general, Rs was the most sensitive variable for ETref, followed by relative humidity, air temperature and wind speed in the basin scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
    
《水文科学杂志》2013,58(3):623-638
Abstract

Estimates of potential evapotranspiration (PET) and reference evapotranspiration (RET) were compared over the Mekong and Yellow river basins, representing humid and semi-arid Asian monsoon regions. Multiple regression relationships between monthly RET, PET, LAI (leaf area index) and climatic variables were explored for different vegetation types. Over the Mekong River basin, the spatial average of RET is only 1.7% lower than PET; however, RET is 140% higher than PET over parts of the Tibetan Plateau, due to the short and sparse grassland, and 30% lower than PET in parts of the lower basin due to the tall and well-developed forests. Over the Yellow River basin, RET is estimated to be higher than PET, on average about 50% higher across the whole basin, due to the generally sparse vegetation. A close linear relationship between annual RET and PET allows the establishment of a regional regression to predict monthly PET from monthly RET, climatic variables and/or vegetation LAI. However, the large prediction errors indicate that the Shuttleworth-Wallace (S-W) model, although it is more complex, should be recommended due to its more robust physical basis and because it successfully accounts for the effect of changing land surface conditions on PET. The limited available field data suggest that the S-W estimate may be more realistic. It was also found that vegetation conditions in summer are primarily controlled by the regional antecedent precipitation in the cold and dry seasons over the Loess Plateau in the middle reaches of the Yellow River.  相似文献   

15.
    
As a result of climate change/variation and its aggravation by human activities over the past several decades, the hydrological conditions in the middle Yellow River in China have dramatically changed, which has led to a sharp decrease of streamflow and the drying up of certain tributaries. This paper simulated and analysed the impact of sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) on hydrological processes, and the study area was located in the 3246 km2 Huangfuchuan River basin. Changes in the hydrological processes were analysed, and periods of natural and disturbed states were defined. Subsequently, the number and distribution of the STDs were determined based on data collected from statistical reports and identified from remote sensing images, and the topological relationships between the STDs and high‐resolution river reaches were established. A hydrological model, the digital Yellow River integrated model, was used to simulate the STD impact on the hydrological processes, and the maximum STD impact was evaluated through a comparison between the simulation results with and without the STDs, which revealed that the interception effect of the STDs contributed to the decrease of the streamflow by approximately 39%. This paper also analysed the relationship between the spatial distribution of the STDs and rainfall in the Huangfuchuan River basin and revealed that future soil and water conservation measures should focus on areas with a higher average annual rainfall and higher number of rainstorm hours. © 2015 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

16.
Based on the regional water resources character, the concept of soil water resources is first redefined, and then associated with their transfer relationship in the hydrological cycle, Evapotranspiration (ET)-based consumption structure and consumption efficiency of soil water resources are analyzed. According to ET 's function in productivity, the consumption efficiency of soil water resources is di- vided into three classes: high efficient consumption from vegetation transpiration, low efficient con- sumption from soil evaporation among plants with high vegetation coverage and inefficient consump- tion from soil evaporation among plants with low vegetation coverage and bare soil evaporation. The high efficient and low efficient consumption were further classified as productive consumption. The ineffi- cient consumption is considered non-productive consumption because it is significant in the whole hydrological cycle process. Finally, according to these categories, and employing a WEP-L dis- tributed hydrological model, this paper analyzes the consumption efficiency of soil water resources in the Yel- low River Basin. The results show that there are 2078.89×108 m3 soil water resources in the whole basin. From the viewpoint of consumption structure, the soil water resources are comprised of 381.89×108 m3 transpiration consumption from vegetation and 1697.09×108 m3 evaporation consumption from soil among plants and bare soil. From the viewpoint of consumption efficiency, soil water re- sources are composed of 920.11×108 m3 efficient consumption and 1158.86×108 m3 of inefficient con- sumption. High efficient consumption accounts for 41.5 percent of the total efficient consumption of the whole basin, low efficient for 58.5 percent. Furthermore, consumption efficiency varies by region. Compared with ET from different land use conditions, the whole basin appears to follow the trend of having the greatest proportion of consumption as inefficient consumption, followed by low efficient consumption, and then the least proportion as high efficient consumption. The amount of inefficient consumption in some regions with vegetation is less than in other regions without vegetation. The amount of inefficient consumption in grasslands is much greater than in forestlands. However, the proportion of low efficient consumption is the greatest in crop fields. The amount of high efficient con- sumption in grasslands and forelands is similar to the corresponding low efficient consumption. However, the low efficient consumption in grasslands is larger than in the forelands. Therefore, when adjusting the utilization efficiency of soil water resources, vegetation coverage and plant structure should be modulated in terms of the principle of decreasing inefficient consumption, improving low efficiency ET and increasing high efficiency ET according to area character.  相似文献   

17.
    
  相似文献   

18.
Selecting the correct resolution in distributed hydrological modelling at the watershed scale is essential in reducing scale-related errors. The work presented herein uses information content (entropy) to identify the resolution which captures the essential variability, at the watershed scale, of the infiltration parameters in the Green and Ampt infiltration equation. A soil map of the Little Washita watershed in south-west Oklahoma, USA was used to investigate the effects of grid cell resolution on the distributed modelling of infiltration. Soil-derived parameters and infiltration exhibit decreased entropy as resolutions become coarser. This is reflected in a decrease in the maximum entropy value for the reclassified/derived parameters vis a vis the original data. Moreover, the entropy curve, when plotted against resolution, shows two distinct segments: a constant section where no entropy was lost with decreasing resolution and another part which is characterized by a sharp decrease in entropy after a critical resolution of 1209 m is reached. This methodology offers a technique for assessing the largest cell size that captures the spatial variability of infiltration parameters for a particular basin. A geographical information system (GIS) based rainfall-runoff model is used to simulate storm hydrographs using infiltration parameter maps at different resolutions as inputs. Model results up to the critical resolution are reproducible and errors are small. However, at resolutions beyond the critical resolution the results are erratic with large errors. A major finding of this study is that a large resolution (1209 m for this basin) yields reproducible model results. When modelling a river basin using a distributed model, the resolution (grid cell size) can drastically affect the model results and calibration. The error structure attributable to grid cell resolution using entropy as a spatial variability measure is shown.  相似文献   

19.
20.
《水文科学杂志》2013,58(6):1151-1164
Abstract

Terrestrial evapotranspiration (ET) plays an important role in determining water and heat balances in the water cycle between the land surface and the atmosphere. In the present research a dynamic approach is developed to simulate actual ET distribution for large-scale spatial and temporal scales based on an integration of meteorological and hydrological methods. The method developed has been used to examine the impacts of climate change, complex land cover features, and soil moisture on actual ET. The distribution characteristics of actual ET demonstrate that ET in eastern China is greater than that in western China, and that ET is greater in low-latitude regions of China than in high-latitude regions. Actual monthly and annual ET values in most regions show an increasing tendency from the year 1991 to 2000, especially in arid and semi-arid regions. The results of the present study also confirm that soil moisture is one of the critical factors that affect regional ET in China. It is demonstrated that the integrated hydrological-meteorological approach is effective for simulating actual ET on large spatial and temporal scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号