首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of basin hydrology on hydraulic geometry of channels variability for incised streams were investigated using available field data sets and models of watershed hydrology and channel hydraulics for the Yazoo River basin,USA.The study presents the hydraulic geometry relations of bankfull discharge,channel width,mean depth,cross-sectional area,longitudinal slope,unit stream power,and mean velocity at bankfull discharge as a function of drainage area using simple linear regression.The hydraulic geometry relations were developed for 61 streams,20 of them are classified as channel evolution model(CEM) Types Ⅳ and Ⅴ and 41 of them are CEM streams Types Ⅱ and Ⅲ.These relationships are invaluable to hydraulic and water resources engineers,hydrologists,and geomorphologists involved in stream restoration and protection.These relations can be used to assist in field identification of bankfull stage and stream dimension in un-gauged watersheds as well as estimation of the comparative stability of a stream channel.A set of hydraulic geometry relations are presented in this study,these empirical relations describe physical correlations for stable and incised channels.Cross-sectional area,which combines the effects of channel width and mean channel depth,was found to be highly responsive to changes in drainage area and bankfull discharge.Analyses of cross-sectional area,channel width,mean channel depth,and mean velocity in conjunction with changes in drainage area and bankfull discharge indicated that the channel width is much more responsive to changes in both drainage area and bankfull discharge than are mean channel depth or mean velocity.  相似文献   

2.
This research builds on the concept of hydraulic geometry and presents a methodology for estimating bankfull discharge and the hydraulic geometry coefficients and exponents for a station using limited data; only stage‐discharge and Landsat imagery. The approach is implemented using 82 streamflow gauging locations in the Amazon Basin. Using the estimated values for the hydraulic geometry relations, bankfull discharge, discharge data above bankfull and upstream drainage area at each site, relationships for estimating channel and floodplain characteristics as a function of drainage area are developed. Specifically, this research provides relationships for estimating bankfull discharge, bankfull depth, bankfull width, and floodplain width as a function of upstream drainage area in the Amazon Basin intended for providing reasonable cross‐section estimates for large scale hydraulic routing models. The derived relationships are also combined with a high resolution drainage network to develop relationships for estimating cumulative upstream channel lengths and surface areas as a function of the specified minimum channel width ranging from 2 m to 1 km (i.e. threshold drainage areas ranging from 1 to 431,000 km2). At the finest resolution (i.e. all channels greater than 2 m or a threshold area of 1 km2), the Amazon Basin contains approximately 4.4 million kilometers of channels with a combined surface area of 59,700 km2. The intended use of these relationships is for partitioning total floodable area (channels versus lakes and floodplain lakes) obtained from remote sensing for biogeochemical applications (e.g. quantifying CO2 evasion in the Amazon Basin). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
An extensive survey and topographic analysis of five watersheds draining the Luquillo Mountains in north‐eastern Puerto Rico was conducted to decouple the relative influences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that exert a localized lithologic influence on the stream channels. However, the stream channels also experience strong hydraulic forcing due to high unit discharge in the humid rainforest environment. GIS‐based topographic analysis was used to examine channel profiles, and survey data were used to analyze downstream changes in channel geometry, grain sizes, stream power, and shear stresses. Results indicate that the longitudinal profiles are generally well graded but have concavities that reflect the influence of multiple rock types and colluvial‐alluvial transitions. Non‐fluvial processes, such as landslides, deliver coarse boulder‐sized sediment to the channels and may locally determine channel gradient and geometry. Median grain size is strongly related to drainage area and slope, and coarsens in the headwaters before fining in the downstream reaches; a pattern associated with a mid‐basin transition between colluvial and fluvial processes. Downstream hydraulic geometry relationships between discharge, width and velocity (although not depth) are well developed for all watersheds. Stream power displays a mid‐basin maximum in all basins, although the ratio of stream power to coarse grain size (indicative of hydraulic forcing) increases downstream. Excess dimensionless shear stress at bankfull flow wavers around the threshold for sediment mobility of the median grain size, and does not vary systematically with bankfull discharge; a common characteristic in self‐forming ‘threshold’ alluvial channels. The results suggest that although there is apparent bedrock and lithologic control on local reach‐scale channel morphology, strong fluvial forces acting over time have been sufficient to override boundary resistance and give rise to systematic basin‐scale patterns. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

4.
Coefficients describing at‐a‐station power‐law relationships between discharge and width were calculated by applying multilevel models to field data collected during routine hydrological monitoring at 326 gauging stations across New Zealand. These hydraulic geometry coefficients were then estimated for each of these stations using standard stepwise multiple‐linear regression models. Analysis was carried out to quantify how the relationship between width and discharge changed in relation to several available explanatory variables. All coefficients describing the at‐a‐station hydraulic geometry were found to have statistically significant relationships with catchment area. Statistically significant relationships between each of the coefficients were also found with the addition of catchment climate as an explanatory variable. Further statistically significant relationships were found when station elevation and channel slope, as well as hydrological source of flow and landcover of the upstream catchment were added to the explanatory variables. The level of confidence that can be associated with estimates of width at ungauged sites, and sites with limited data availability, was then assessed by comparing model predictions with independent paired data on observed width and discharge from 197 sites. When compared against these independent data, model predictions of width were improved with the addition of predictor variables of the hydraulic geometry coefficients. The greatest improvements were made when climate was added to catchment area as predictor variables. Minor improvements were made when all available information was used to predict width at these independent sites. Although the analysis was purely empirical, results describing relationships between hydraulic geometry coefficients and catchment characteristics corresponded well with knowledge of the processes controlling at‐a‐station hydraulic geometry of river width. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
D. J. Booker  M. J. Dunbar 《水文研究》2008,22(20):4049-4057
Using a dataset of gauged river discharges taken from sites in England and Wales, linear multilevel models (also known as mixed effects models) were applied to quantify the variability in discharge and the discharge‐hydraulic geometry relationships across three nested spatial scales. A jackknifing procedure was used to test the ability of the multilevel models to predict hydraulic geometry, and therefore width, mean depth and mean velocity, at ungauged stations. These models provide a framework for making predictions of hydraulic geometry parameters, with associated levels of uncertainty, using different levels of data availability. Results indicate that as one travels downstream along a river there is greater variability in hydraulic geometry than is the case between rivers of similar sizes. This indicates that hydraulic geometry (and therefore hydrology) is driven by catchment area, to a greater extent than by natural geomorphological variations in the streamwise direction at the mesoscale, but these geomorphological variations can still have a major impact on channel structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper, the first of two, hypothesizes that: (1) the temporal variation of stream power of a river channel at a given station with varying discharge is accomplished by the temporal variation in channel form (flow depth and channel width) and hydraulic variables, including energy slope, flow velocity and friction; (2) the change in stream power is distributed among the changes in flow depth, channel width, flow velocity, slope, and friction, depending on the boundary conditions that the channels has to satisfy. The second hypothesis is a result of the principle of maximum entropy and the theory of minimum energy dissipation or its simplified minimum stream power. These two hypotheses lead to families of at‐a‐station hydraulic geometry relations. The conditions under which these families of relations can occur in the field are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A comparison has been made between the hydraulic geometry of sand‐ and gravel‐bed rivers, based on data from alluvial rivers around the world. The results indicate a signi?cant difference in hydraulic geometry among sand‐ and gravel‐bed rivers with different channel patterns. On this basis, some diagrams for discrimination of meandering and braided channel patterns have been established. The relationships between channel width and water discharge, between channel depth and water discharge, between width–depth ratio and water discharge and between channel slope and water discharge can all be used for channel pattern discrimination. The relationship between channel width and channel depth can also be used for channel pattern discrimination. However, the accuracy of these relationships for channel pattern discrimination varies, and the depth–discharge relationship is a better discriminator of pattern type than the classic slope–discharge function. The cause for this difference has been explained qualitatively. To predict the development of channel patterns under different natural conditions, the pattern discriminator should be searched on the basis of independent or at least semi‐independent variables. The relationship between stream power and bed material grain size can be used to discriminate channel patterns, which shows a better result than the discriminator using the slope–discharge relationship. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Artificial open channels being costlier infrastructure, their design should ensure reliability along with optimality in project cost. This paper presents reliability analysis of composite channels, considering uncertainty associated with various design parameters such as friction factors, longitudinal slope, channel width, side slope, and flow depth. This study also considers uncertainties of watershed characteristics, rainfall intensity and drainage area to quantify the uncertainty of runoff. For uncertainty modeling, the advanced first order second moment method and Monte Carlo simulation are used and it is found that the results by both approaches show good agreement. Then, a reliability index that can be used to design a composite channel to convey design discharge for a specified risk or probability of failure is presented, and its sensitivity with different channel design parameters are analyzed. To validate the effectiveness of the present approach, the reliability values and safety factors for variable system loading scenario are obtained under static and dynamic environment. The sensitivity analysis shows that flow depth and bed width are the most influencing parameters that affect the safety factor and reliability.  相似文献   

10.
Using hydraulic parameters is essential for describing soil detachment and developing physically based erosion prediction models. Many hydraulic parameters have been used, but the one that performs the best for describing soil detachment on steep slopes when the lateral expansion (widening) of rills is not limited has not been identified. An indoor concentrated flow scouring experiment was performed on steep loessial slopes to investigate soil detachment rates for different flow rates and slope gradients. The experiments were conducted on a slope‐adjustable plot (5 m length, 1 m width, 0.5 m depth). Sixteen combinations of 4 flow rates (10, 15, 20, and 25 L/min) and 4 slope gradients (17.6%, 26.8%, 36.4%, and 46.6%) were investigated. The individual and combined effects of slope gradient and flow hydraulic parameters on soil detachment rate were analysed. The results indicated that soil detachment rate increased with flow rate and slope gradient. Soil detachment rate varied linearly and exponentially with flow rate and slope gradient, respectively. Multivariate, nonlinear regression analysis indicated that flow depth exerted the greatest influence on the soil detachment rate, followed by unit discharge per unit width, slope gradient, and flow rate in this study. Shear stress and stream power could efficiently describe the soil detachment rate using a power equation. However, the unit stream power and unit energy of the water‐carrying section changed linearly with soil detachment rate. Stream power was an optimal hydraulic parameter for describing soil detachment. These findings improve our understanding of concentrated flow erosion on steep loessial slopes.  相似文献   

11.
Relationships between slope form and stream magnitude, drainage area and stream gradient are investigated in a small upland catchment experiencing active stream incision. Profiles selected on a stratified random basis provide data on five slope form variables. The observed relationships suggest a spatial sequence of slope form, associated with a downstream increase in discharge, characterized by decreasing overall slope convexity and increasing mean slope angle and attributed to a reduction in the relative length of the upslope convexity with respect to the essentially stream-controlled main slope.  相似文献   

12.
Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3?, PO43?, SO42?). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.  相似文献   

13.
To quantify spatiotemporal variation in hydraulic properties of bank gully concentrated flow, a series of scour experiments were run under water discharge rates ranging from 30 to 120 l min?1. Concentrated flows were found to be turbulent and supercritical in the upstream catchment area and downstream gully beds. As discharge increased, values of the soil erosion rate, Reynolds number (Re), shear stress, stream power, and flow energy consumption (ΔE) increased while values of the Froude number (Fr) and the Darcy–Weisbach friction factor (resistance f ) did not. With the exception of gully headcut collapse under discharge rates of 60, 90, and 120 l min?1, a declining power function trend (P < 0.05) in the soil erosion rate developed in the upstream catchment area, headcuts, and downstream gully beds. However, increasing trends were observed in temporal variations of hydraulic properties for downstream gully beds and the upstream catchment area. Despite significant differences in temporal variation between the soil erosion rate and hydraulic property values, relative steady state conditions of the soil erosion rate and ΔE were attained following an initial period of adjustment in the upstream catchment area, headcuts, and downstream gully beds under different discharge rates. A logarithmic growth of flow energy consumption per unit soil loss (ΔEu) was observed in bank gullies and the upstream catchment area as the experiment progressed, further illustrating the actual reason behind the discrepancy in temporal variation between soil erosion rates and ΔE. Results demonstrate that ΔE can be used to estimate headcut erosion soil loss, but further quantitative studies are required to quantify coupling effects between hydraulic properties and vertical variation in soil mechanical properties on temporal variation for bank gully soil erosion rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Duke U. Ophori 《水文研究》2004,18(9):1579-1593
Two‐dimensional regional groundwater flow was simulated based on a conceptual model of low‐permeability crystalline rocks of the Whiteshell Research Area (WRA) in south‐eastern Manitoba. The conceptual model consists of fracture zones that strike in different directions and dip at various angles in the background rock mass. The thickness and hydraulic properties of the fracture zones in the conceptual model were varied as were the fluid properties and the boundary conditions of the groundwater flow system. The effects of these variations on the groundwater flow pattern and on the convective travel time along pathways from a hypothetical disposal vault at 500 m depth to discharge locations at the ground surface were evaluated. The vault was located in the regional discharge area of the groundwater system. A homogeneous conceptual model of the WRA, having only freshwater flow, formed a groundwater flow pattern with a regional flow system. Local flow systems developed increasingly with the introduction of fracture zones 20 m and 3 m thick, and depth‐dependent fluid density. This indicates a reduction in groundwater residence time by fracture zones and fluid density. Flow pathways were analysed using both a stream‐function and a particle‐tracking technique. The pathways and their lengths from the location of the vault to the surface varied spatially according to the flow patterns. The minimum travel time along these pathways was less than 150 000 and greater than 4 000 000 years in models with and without fracture zones, respectively, indicating that the presence of fracture zones was the major controlling factor. A precise knowledge and refinement of conceptual model parameters is necessary during site selection for waste disposal purposes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Headwater streams drain the majority of most landscapes, yet less is known about their morphology and sediment transport processes than for lowland rivers. We have studied headwater channel form, discharge and erosive power in the humid, moderate‐relief Valley and Ridge and Blue Ridge provinces of the Appalachian Mountains. Field observations from nine headwater (<2 km2 drainage area), mixed bedrock–alluvial channels in a variety of boundary conditions demonstrate variation with respect to slope‐area channel initiation, basic morphology, slope distribution, hydraulic geometry, substrate grain size and role of woody debris. These channels display only some of the typical downstream trends expected of larger, lowland rivers. Variations are controlled mainly by differences in bedrock resistance, from the formation level down to short‐wavelength, outcrop‐scale variations. Hydrologic modeling on these ungauged channels estimates the recurrence of channel‐filling discharge and its ability to erode the channel bed. Two‐year recurrence discharge is generally larger and closer to bankfull height in the Valley and Ridge, due to low soil infiltration capacity. Discharge that fills the channel to its surveyed bankfull form is variable, generally exceeding two‐year flows at small drainage areas (<0·5 km2) and being exceeded by them at greater drainage areas. This suggests bankfull is not controlled by the same recurrence storm throughout a channel or physiographic region. Stream power and relative competence are also variable. These heterogeneities contrast relations observed in larger streams and illustrate the sensitivity of headwater channels to local knickpoints of resistant bedrock and armoring of channels by influx of coarse debris from hillslopes. The general lack of predictable trends or functional relationships among hydraulic variables and the close coupling of channel form and function with local boundary conditions indicate that headwater streams pose a significant challenge to landscape evolution modeling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this work is threefold: (1) to identify the main characteristics of water‐table variations from observations in the Kervidy‐Naizin catchment, a small catchment located in western France; (2) to confront these characteristics with the assumptions of the Topmodel concepts; and (3) to analyse how relaxation of the assumptions could improve the simulation of distributed water‐table depth. A network of piezometers was installed in the Kervidy‐Naizin catchment and the water‐table depth was recorded every 15 min in each piezometer from 1997 to 2000. From these observations, the Kervidy‐Naizin groundwater appears to be characteristic of shallow groundwaters of catchments underlain by crystalline bedrock, in view of the strong relation between water distribution and topography in the bottom land of the hillslopes. However, from midslope to summit, the water table can attain a depth of many metres, it does not parallel the topographic surface and it remains very responsive to rainfall. In particular, hydraulic gradients vary with time and are not equivalent to the soil surface slope. These characteristics call into question some assumptions that are used to model shallow lateral subsurface flow in saturated conditions. We investigate the performance of three models (Topmodel, a kinematic model and a diffusive model) in simulating the hourly distributed water‐table depths along one of the hillslope transects, as well as the hourly stream discharge. For each model, two sets of parameters are identified following a Monte Carlo procedure applied to a simulation period of 2649 h. The performance of each model with each of the two parameter sets is evaluated over a test period of 2158 h. All three models, and hence their underlying assumptions, appear to reproduce adequately the stream discharge variations and water‐table depths in bottom lands at the foot of the hillslope. To simulate the groundwater depth distribution over the whole hillslope, the steady‐state assumption (Topmodel) is quite constraining and leads to unacceptable water‐table depths in midslope and summit areas. Once this assumption is relaxed (kinematic model), the water‐table simulation is improved. A subsequent relaxation of the hydraulic gradient (diffusive model) further improves water‐table simulations in the summit area, while still yielding realistic water‐table depths in the bottom land. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
This paper reports the application of a two‐dimensional hydraulic model to a braided reach of the Avoca River, New Zealand. Field measurements of water surface elevation, depth and velocity obtained at low flow were used to validate the model and to optimize the parameterization of bed friction. The main systematic trends in the measured flow variables are reproduced by the model. However, field data are characterized by greater spatial variability than model output reflecting differences in the scale of processes measured in the field and represented by the model. Additional model runs were conducted to simulate flow patterns within the study reach at five higher discharges. The purpose of these simulations was to evaluate the potential for using two‐dimensional hydraulic models to quantify the reach‐scale hydraulic characteristics of braided rivers and their dependence on discharge. Changes in flow depth and velocity with increasing discharge exhibit trends that are consistent with the results of previous field investigations, although the tendency for the wetted area of the braidplain within particular depth and velocity categories to remain fixed as discharge rises, as has been noted for several braided rivers in New Zealand, was not observed. Modelled shear stress frequency distributions fit gamma functions that incorporate a distribution shape parameter, the value of which follows clear systematic trends with rising discharge. These results illustrate both the problems of, and potential for, using two‐dimensional hydraulic models in braided river applications. This leads to something of a paradox in that while such models provide a means of generating hydraulic information that would be difficult to obtain in the field at an equivalent spatial resolution, they are, due to the problems inherent to data collection, difficult to validate conclusively. Despite this limitation, the application of spatially distributed models to investigate relationships between discharge and reach‐scale form and process variables appears to have considerable potential. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small- and large-scale structures of drainage networks using field studies and computer analysis of 30- m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross- sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for fills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.  相似文献   

19.
The behaviour of a discrete sub‐bank‐full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank‐full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank‐full stage, and be higher in both sub‐bank‐full and overbank flows. Factors contributing to enhanced flow loss in the sub‐bank‐full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
What hydraulic information can be gained from remotely sensed observations of a river's surface? In this study, we analyze the relationship between river bed undulations and water surfaces for an ungauged reach of the Xingu River, a first‐order tributary of the Amazon river. This braided reach is crosscut more than 10 times by a ENVISAT (ENVironmental SATellite) track that extends over 100 km. Rating curves based on a modeled discharge series and altimetric measurements are used, including the zero‐flow depth Z 0 parameter, which describes river's bathymetry. River widths are determined from JERS (Japanese Earth Ressources Satellite) images. Hydrodynamic laws predict that irregularities in the geometry of a river bed produce spatial and temporal variations in the water level, as well as in its slope. Observation of these changes is a goal of the Surface Water and Ocean Topography satellite mission, which has a final objective of determining river discharge. First, the concept of hydraulic visibility is introduced, and the seasonality of water surface slope is highlighted along with different flow regimes and reach behaviors. Then, we propose a new single‐thread effective hydraulic approach for modeling braided rivers flows, based on the observation scales of current satellite altimetry. The effective hydraulic model is able to reproduce water surface elevations derived by satellite altimetry, and it shows that hydrodynamical signatures are more visible in areas where the river bed morphology varies significantly and for reaches with strong downstream control. The results of this study suggest that longitudinal variations of the slope might be an interesting criteria for the analysis of river segmentation into elementary reaches for the Surface Water Ocean Topography mission that will provide continuous measurements of the water surface elevations, the slopes, and the reach widths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号